CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic
Administrative

• HW1 due today
 – Submit via Gradescope by 11:00 pm
 – EC1 extra credit submitted separately

• Tomorrow:
 – HW2 out
 – Quiz sections
 – 390Z/ZA sign-up still available
 Loew 113 Thursday 3:30-5:00
Last Class: 1-bit Binary Adder

\[
\begin{array}{cccc}
A & + & B & S \\
\text{(C}_{\text{OUT}}) & & & (\text{C}_{\text{OUT}})
\end{array}
\]

\[
\begin{array}{c}
0 + 0 = 0 \text{ (with } C_{\text{OUT}} = 0) \\
0 + 1 = 1 \text{ (with } C_{\text{OUT}} = 0) \\
1 + 0 = 1 \text{ (with } C_{\text{OUT}} = 0) \\
1 + 1 = 0 \text{ (with } C_{\text{OUT}} = 1)
\end{array}
\]

Idea: These are chained together, with a carry-in
Design Process:

1. Write down a function table showing desired 0/1 inputs
2. Construct a Boolean algebra expression
 • term for each 1 in the column
 • sum (or) them to get all 1s
3. Simplify the expression using equivalences
4. Translate Boolean algebra expression to a circuit
Last Class: 1-bit Binary Adder

- **Inputs:** A, B, Carry-in
- **Outputs:** Sum, Carry-out

![Truth Table and Logic Equation](image)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C\text{IN}</th>
<th>C\text{OUT}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[S = A' \cdot B' \cdot C_{\text{IN}} + A' \cdot B \cdot C_{\text{IN}}' + A \cdot B' \cdot C_{\text{IN}}' + A \cdot B \cdot C_{\text{IN}} \]

\[C_{\text{OUT}} = A' \cdot B \cdot C_{\text{IN}} + A \cdot B' \cdot C_{\text{IN}} + A \cdot B \cdot C_{\text{IN}}' + A \cdot B \cdot C_{\text{IN}} \]
The theorems of Boolean algebra can simplify expressions
– e.g., full adder’s carry-out function

\[
\text{Cout} = A' B \text{ Cin} + A B' \text{ Cin} + A B \text{ Cin'} + A B \text{ Cin}
\]

\[
= A' B \text{ Cin} + A B' \text{ Cin} + A B \text{ Cin'} + A B \text{ Cin}
\]

\[
= (A' + A) B \text{ Cin} + A B' \text{ Cin} + A B \text{ Cin'} + A B \text{ Cin}
\]

\[
= (1) B \text{ Cin} + A B' \text{ Cin} + A B \text{ Cin'} + A B \text{ Cin}
\]

\[
= B \text{ Cin} + A B' \text{ Cin} + A B \text{ Cin'} + A B \text{ Cin}
\]

\[
= B \text{ Cin} + A (B' + B) \text{ Cin} + A B \text{ Cin'} + A B \text{ Cin}
\]

\[
= B \text{ Cin} + A \text{ Cin} + A B (\text{ Cin'} + \text{ Cin})
\]

\[
= B \text{ Cin} + A \text{ Cin} + A B (1)
\]

\[
= B \text{ Cin} + A \text{ Cin} + A B
\]

Adding extra copies of the same term lets us reuse it for simplification.
1-Bit Adder with XOR gates allowed

$$\text{Sum} = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

No Boolean algebra simplifications possible … but $\text{Sum} \equiv (A \oplus B) \oplus C_{IN}$
Given a truth table:

2. Write the Boolean expression
3. Simplify (“minimize”) the Boolean expression
4. Draw as gates
5. Map to available gates

\[
F = A'BC' + A'BC + AB'C + ABC \\
= A'B(C' + C) + AC(B' + B) \\
= A'B + AC
\]
Multi-bit Ripple-Carry Adder

1-Bit Adder

A → B → Cout
A → B → Sum
A → B → Cin

Sum

Cout → Cin

A2 → B2 → Sum2
A1 → B1 → Sum1
A0 → B0 → Sum0

Cout → Cin
Canonical Forms

• Truth table is the unique signature of a Boolean Function

• The same truth table can have many gate realizations
 – We’ve seen this already
 – Depends on how good we are at Boolean simplification

• Canonical forms
 – Standard forms for a Boolean expression
 – We all come up with the same expression
Sum-of-Products Canonical Form

- **AKA** Disjunctive Normal Form (DNF)
- **AKA** Minterm Expansion

F = A’B’C + A’BC + AB’C + ABC’ + ABC’

1. Read T rows off truth table
2. Convert to Boolean Algebra
 - 001 → A’B’C
 - 011 → A’BC
 - 101 → AB’C
 - 110 → ABC’
 - 111 → ABC

Don’t simplify!
Sum-of-Products Canonical Form

Product term (or minterm)
- ANDed product of literals – input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>minterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A'B'C'</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A'B'C</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A'BC'</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A'BC</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>AB'C'</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>AB'C</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>ABC'</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ABC</td>
</tr>
</tbody>
</table>

F in canonical form:

\[F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC \]

canonical form ≠ minimal form

\[F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC' \]

\[= (A'B' + A'B + AB' + AB)C + ABC' \]

\[= ((A' + A)(B' + B))C + ABC' \]

\[= C + ABC' \]

\[= ABC' + C \]

\[= AB + C \]
Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[F = \text{Read } F \text{ rows off truth table} \rightarrow \text{Negate all bits} \rightarrow \text{Multiply the maxterms together} \rightarrow \text{Convert to Boolean Algebra} \]

F = 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1
Product-of-Sums Canonical Form

- **AKA** Conjunctive Normal Form (CNF)
- **AKA** Maxterm Expansion

F = (A' + B + C)(A + B' + C)(A + B + C)

1. Read F rows off truth table
2. Negate all bits
3. Convert to Boolean Algebra
4. Don’t simplify!

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know \((F')' = F\)
- We know how to get a minterm expansion for \(F'\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(F' = A'B'C' + A'BC' + AB'C'\)
Product-of-Sums: Why does this procedure work?

Useful Facts:

• We know \((F')' = F\)
• We know how to get a minterm expansion for \(F'\)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[F' = A'B'C' + A'BC' + AB'C' \]

Taking the complement of both sides...
\[(F')' = (A'B'C' + A'BC' + AB'C')' \]

And using DeMorgan/Complement...
\[F = (A'B'C')' (A'BC')' (AB'C')' \]
\[= (A'' + B'' + C'')(A'' + B' + C'')(A' + B'' + C'') \]
\[= (A + B + C)(A + B' + C)(A' + B + C) \]
Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals – input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>maxterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A+B+C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A+B+C’</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A+B’+C</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A+B’+C’</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A’+B+C</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A’+B+C’</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A’+B’+C</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A’+B’+C’</td>
</tr>
</tbody>
</table>

F in canonical form:

\[F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C) \]

canonical form ≠ minimal form

\[F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C) \]

\[= (A + B + C) (A’ + B + C) \]

\[= (A + C) (B + C) \]
Predicate Logic

• Propositional Logic
 “If you take the high road and I take the low road then I’ll arrive in Scotland before you.”

• Predicate Logic
 “All positive integers x, y, and z satisfy $x^3 + y^3 \neq z^3$.”
• **Propositional Logic**
 - Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives

• **Predicate Logic**
 - Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about
Predicate Logic

Adds two key notions to propositional logic

– Predicates

– Quantifiers
Predicate

- A function that returns a truth value, e.g.,

\[
\begin{align*}
\text{Cat}(x) & \iff \text{“x is a cat”} \\
\text{Prime}(x) & \iff \text{“x is prime”} \\
\text{HasTaken}(x, y) & \iff \text{“student x has taken course y”} \\
\text{LessThan}(x, y) & \iff \text{“x < y”} \\
\text{Sum}(x, y, z) & \iff \text{“x + y = z”} \\
\text{GreaterThan5}(x) & \iff \text{“x > 5”} \\
\text{HasNChars}(s, n) & \iff \text{“string s has length n”}
\end{align*}
\]

Predicates can have varying numbers of arguments and input types.
For ease of use, we define one “type”/“domain” that we work over. This set of objects is called the “domain of discourse”.

For each of the following, what might the domain be?

1. “x is a cat”, “x barks”, “x ruined my couch”

2. “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

3. “student x has taken course y” “x is a pre-req for z”
For ease of use, we define one “type”/“domain” that we work over. This set of objects is called the “domain of discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”
 “mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”
 “numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for z”
 “students and courses” or “university entities” or ...
Quantifiers

We use *quantifiers* to talk about collections of objects.

\(\forall x \ P(x) \)

\(P(x) \) is true for every \(x \) in the domain
read as “for all \(x \), \(P \) of \(x \)”

\(\exists x \ P(x) \)

There is an \(x \) in the domain for which \(P(x) \) is true
read as “there exists \(x \), \(P \) of \(x \)”
We use quantifiers to talk about collections of objects.

Universal Quantifier ("for all"): $\forall x \ P(x)$

$P(x)$ is true for every x in the domain
read as “for all x, P of x”

Examples: Are these true?

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan5}(x)$
Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier ("for all"): \(\forall x \, P(x) \)

\(P(x) \) is true for every \(x \) in the domain
read as “for all \(x \), \(P \) of \(x \)”

Examples: Are these true? It depends on the domain. For example:

<table>
<thead>
<tr>
<th></th>
<th>Integers</th>
<th>Odd Integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x \text{ Odd}(x))</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>(\forall x \text{ LessThan4}(x))</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
We use *quantifiers* to talk about collections of objects.

Existential Quantifier ("exists"): $\exists x \ P(x)$

There is an x in the domain for which $P(x)$ is true, read as "there exists x, P of x"

Examples:

- $\exists x \ \text{Odd}(x)$
- $\exists x \ \text{LessThan5}(x)$
Quantifiers

We use *quantifiers* to talk about collections of objects.

Existential Quantifier (“exists”): \(\exists x \ P(x) \)

There is an \(x \) in the domain for which \(P(x) \) is true

read as “there exists \(x \), \(P \) of \(x \)”

Examples: Are these true? It depends on the domain. For example:

<table>
<thead>
<tr>
<th></th>
<th>{1, 3, -1, -27}</th>
<th>Integers</th>
<th>Positive Multiples of 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists x) Odd(x)</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>(\exists x) LessThan4(x)</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Statements with Quantifiers

Just like with propositional logic, we need to define variables (this time predicates) before we do anything else. We must also now define a domain of discourse before doing anything else.

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Positive Integers</th>
</tr>
</thead>
</table>

Predicate Definitions

<table>
<thead>
<tr>
<th>Even(x)</th>
<th>“x is even”</th>
<th>Greater(x, y)</th>
<th>“x > y”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd(x)</td>
<td>“x is odd”</td>
<td>Equal(x, y)</td>
<td>“x = y”</td>
</tr>
<tr>
<td>Prime(x)</td>
<td>“x is prime”</td>
<td>Sum(x, y, z)</td>
<td>“x + y = z”</td>
</tr>
</tbody>
</table>
Determine the truth values of each of these statements:

\[\exists x \text{ Even}(x) \]

\[\forall x \text{ Odd}(x) \]

\[\forall x (\text{Even}(x) \lor \text{Odd}(x)) \]

\[\forall x \text{ Greater}(x+1, x) \]

\[\exists x (\text{Even}(x) \land \text{Prime}(x)) \]
<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Positive Integers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Predicate Definitions</th>
<th>Even(x) ::= “x is even”</th>
<th>Greater(x, y) ::= “x > y”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odd(x) ::= “x is odd”</td>
<td>Equal(x, y) ::= “x = y”</td>
</tr>
<tr>
<td></td>
<td>Prime(x) ::= “x is prime”</td>
<td>Sum(x, y, z) ::= “x + y = z”</td>
</tr>
</tbody>
</table>

Determine the truth values of each of these statements:

- ∃x Even(x) \[\text{T}\] e.g. 2, 4, 6, ...
- ∀x Odd(x) \[\text{F}\] e.g. 2, 4, 6, ...
- ∀x (Even(x) ∨ Odd(x)) \[\text{T}\] every integer is either even or odd
- ∃x (Even(x) ∧ Odd(x)) \[\text{F}\] no integer is both even and odd
- ∀x Greater(x+1, x) \[\text{T}\] adding 1 makes a bigger number
- ∃x (Even(x) ∧ Prime(x)) \[\text{T}\] Even(2) is true and Prime(2) is true
Statements with Quantifiers

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Positive Integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate Definitions</td>
<td></td>
</tr>
<tr>
<td>Even(x) ::= “x is even”</td>
<td>Greater(x, y) ::= “x > y”</td>
</tr>
<tr>
<td>Odd(x) ::= “x is odd”</td>
<td>Equal(x, y) ::= “x = y”</td>
</tr>
<tr>
<td>Prime(x) ::= “x is prime”</td>
<td>Sum(x, y, z) ::= “x + y = z”</td>
</tr>
</tbody>
</table>

Translate the following statements to English

∀x ∃y Greater(y, x)

∀x ∃y (Greater(y, x) ∧ Prime(y))

∀x (Prime(x) → (Equal(x, 2) ∨ Odd(x)))

∃x ∃y (Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y))
Statements with Quantifiers (Literal Translations)

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Predicate Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Integers</td>
<td>Even(x) ::= “x is even”</td>
</tr>
<tr>
<td></td>
<td>Odd(x) ::= “x is odd”</td>
</tr>
<tr>
<td></td>
<td>Prime(x) ::= “x is prime”</td>
</tr>
<tr>
<td></td>
<td>Greater(x, y) ::= “x > y”</td>
</tr>
<tr>
<td></td>
<td>Equal(x, y) ::= “x = y”</td>
</tr>
<tr>
<td></td>
<td>Sum(x, y, z) ::= “x + y = z”</td>
</tr>
</tbody>
</table>

Translate the following statements to English

\[\forall x \exists y \text{ Greater}(y, x) \]

For every positive integer \(x \), there is a positive integer \(y \), such that \(y > x \).

\[\forall x \exists y \text{ Greater}(x, y) \]

For every positive integer \(x \), there is a positive integer \(y \), such that \(x > y \).

\[\forall x \exists y (\text{Greater}(y, x) \land \text{Prime}(y)) \]

For every positive integer \(x \), there is a pos. int. \(y \) such that \(y > x \) and \(y \) is prime.

\[\forall x (\text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))) \]

For each positive integer \(x \), if \(x \) is prime, then \(x = 2 \) or \(x \) is odd.

\[\exists x \exists y (\text{Sum}(x, 2, y) \land \text{Prime}(x) \land \text{Prime}(y)) \]

There exist positive integers \(x \) and \(y \) such that \(x + 2 = y \) and \(x \) and \(y \) are prime.
Statements with Quantifiers (Natural Translations)

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Positive Integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate Definitions</td>
<td>Even(x) ::= “x is even”</td>
</tr>
<tr>
<td></td>
<td>Odd(x) ::= “x is odd”</td>
</tr>
<tr>
<td></td>
<td>Prime(x) ::= “x is prime”</td>
</tr>
</tbody>
</table>

Translate the following statements to English

∀ x ∃ y Greater(y, x)
There is no greatest positive integer.

∀ x ∃ y Greater(x, y)
There is no least positive integer.

∀ x ∃ y (Greater(y, x) ∧ Prime(y))
For every positive integer there is a larger number that is prime.

∀ x (Prime(x) → (Equal(x, 2) ∨ Odd(x)))
Every prime number is either 2 or odd.

∃ x ∃ y (Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y))
There exist prime numbers that differ by two.”
English to Predicate Logic

Domain of Discourse
Mammals

Predicate Definitions
Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

“Red cats like tofu”

“Some red cats don’t like tofu”
English to Predicate Logic

Domain of Discourse

Mammals

Predicate Definitions

<table>
<thead>
<tr>
<th>Cat(x) ::= “x is a cat”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red(x) ::= “x is red”</td>
</tr>
<tr>
<td>LikesTofu(x) ::= “x likes tofu”</td>
</tr>
</tbody>
</table>

“Red cats like tofu”

∀x ((Red(x) ∧ Cat(x)) → LikesTofu(x))

“Some red cats don’t like tofu”

∃y ((Red(y) ∧ Cat(y)) ∧ ¬LikesTofu(y))
English to Predicate Logic

Predicate Definitions
- Cat(x) ::= “x is a cat”
- Red(x) ::= “x is red”
- LikesTofu(x) ::= “x likes tofu”

Domain of Discourse
- Mammals

- “Red cats like tofu”
 - When putting two predicates together like this, we use an “and”.
 - When there’s no leading quantification, it means “for all”.

- “Some red cats don’t like tofu”
 - “Some” means “there exists”.
 - When restricting to a smaller domain in a “for all” we use implication.
 - When restricting to a smaller domain in an “exists” we use and.
Negations of Quantifiers

Predicate Definitions
PurpleFruit(x) ::= “x is a purple fruit”

(*) \(\forall x \text{ PurpleFruit}(x) \) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key Idea: In **every** domain, exactly one of a statement and its negation should be true.
Negations of Quantifiers

Predicate Definitions
PurpleFruit(x) ::= “x is a purple fruit”

(*) ∀x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a statement and its negation should be true.

The only choice that ensures exactly one of the statement and its negation is (b).
De Morgan’s Laws for Quantifiers

\neg \forall x \ P(x) \equiv \exists x \ \neg P(x) \\
\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)
De Morgan’s Laws for Quantifiers

\[\neg \forall x \ P(x) \equiv \exists x \ \neg P(x) \]

\[\neg \exists x \ P(x) \equiv \forall x \ \neg P(x) \]

“There is no largest integer”

\[\neg \exists x \ \forall y \ (x \geq y) \]

\[\equiv \ \forall x \ \neg \forall y \ (x \geq y) \]

\[\equiv \ \forall x \ \exists y \ (x < y) \]

“For every integer there is a larger integer”
Scope of Quantifiers

\[\exists x \ (P(x) \land Q(x)) \quad \text{vs.} \quad \exists x \ P(x) \land \exists x \ Q(x) \]
Scope of Quantifiers

$\exists x \ (P(x) \land Q(x))$ \quad vs. \quad $\exists x \ P(x) \land \exists x \ Q(x)$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x’s.
Scope of Quantifiers

Example:
\[\text{NotLargest}(x) \equiv \exists y \text{ Greater (y, x)} \equiv \exists z \text{ Greater (z, x)} \]

truth value:
- doesn’t depend on \(y \) or \(z \) “bound variables”
- does depend on \(x \) “free variable”

quantifiers only act on free variables of the formula they quantify

\[\forall x (\exists y (P(x,y) \rightarrow \forall x Q(y, x))) \]
Quantifier “Style”

\[\forall x (\exists y (P(x, y) \rightarrow \forall x Q(y, x))) \]

This isn’t “wrong”, it’s just horrible style. Don’t confuse your reader by using the same variable multiple times...there are a lot of letters...