Section 5: Number Theory and Induction

1. GCD
 (a) Calculate \(\gcd(100, 50) \).

 (b) Calculate \(\gcd(17, 31) \).

 (c) Find the multiplicative inverse of 6 modulo 7.

 (d) Does 49 have a multiplicative inverse modulo 7?

2. Extended Euclidean Algorithm
 (a) Find the multiplicative inverse \(y \) of 7 \(\pmod{33}\). That is, find \(y \) such that \(7y \equiv 1 \pmod{33} \). You should use the extended Euclidean Algorithm. Your answer should be in the range \(0 \leq y < 33 \).

 (b) Now, solve \(7z \equiv 2 \pmod{33} \) for all of its integer solutions \(z \).

3. Induction
 (a) For any \(n \in \mathbb{N} \), define \(S_n \) to be the sum of the squares of the first \(n \) positive integers, or

 \[S_n = 1^2 + 2^2 + \cdots + n^2. \]

 Prove that for all \(n \in \mathbb{N} \), \(S_n = \frac{1}{6}n(n+1)(2n+1) \).

 (b) Define the triangle numbers as \(\Delta_n = 1 + 2 + \cdots + n \), where \(n \in \mathbb{N} \). We showed in lecture that \(\Delta_n = \frac{n(n+1)}{2} \).

 Prove the following equality for all \(n \in \mathbb{N} \):

 \[0^3 + 1^3 + \cdots + n^3 = \Delta_n^2 \]

 (c) Prove for all \(n \in \mathbb{N} \) that if you have two groups of numbers, \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_n \), such that \(\forall (i \in [n]), a_i \leq b_i \), then it must be that:

 \[a_1 + \cdots + a_n \leq b_1 + \cdots + b_n \]

4. Casting Out Nines
 (a) Suppose that \(a \equiv b \pmod{m} \). Prove by induction that for every integer \(n \geq 1 \), \(a^n \equiv b^n \pmod{m} \).

 (b) Let \(K \in \mathbb{N} \). Prove that if \(K \equiv 0 \pmod{9} \), then the sum of the digits of \(K \) is a multiple of 9.