1. **Exclusive Or**
 For each of the following, decide whether inclusive-or or exclusive-or is intended:

 (a) Experience with C or Java is required.

 Solution:
 Inclusive Or.

 (b) Lunch includes soup or salad.

 Solution:
 Exclusive Or.

 (c) Publish or perish

 Solution:
 Exclusive Or.

 (d) To enter the country you need a passport or Global Entry card.

 Solution:
 Inclusive Or.

2. **Translations**
 For each of the following, define propositional variables and translate the sentences into logical notation.

 (a) I will remember to send you the address only if you send me an e-mail message.

 Solution:

 \[p : \text{I will remember to send you the address} \]
 \[q : \text{You send me an e-mail message} \]

 \[p \rightarrow q \]

 (b) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.

 Solution:

 \[p : \text{Berries are ripe along the trail} \]
 \[q : \text{Hiking is safe} \]
 \[r : \text{Grizzly bears have not been seen in the area} \]

 \[p \rightarrow (q \leftrightarrow r) \]

 (c) Unless I am trying to type something, my cat is either eating or sleeping.
Solution:

\(p : \) My cat is eating
\(q : \) My cat is sleeping
\(r : \) I’m trying to type

\[\neg r \to (p \oplus q) \]

3. Teatime
Consider the following sentence:

If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.

(a) Define propositional variables and translate the sentence into an expression in logical notation.

Solution:

\(p : \) I am drinking tea
\(q : \) I am eating a cookie

\[(p \to q) \lor (q \to p) \]

(b) Fill out a truth table for your expression.

Solution:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \to q)</th>
<th>(q \to p)</th>
<th>((p \to q) \lor (q \to p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

(c) Based on your truth table, classify the original sentence as a contingency, tautology, or contradiction.

Solution:

Tautology
4. Truth Tables
Write a truth table for each of the following:

(a) \((p ⊕ q) ∨ (p ⊕ ¬q)\)

Solution:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p ⊕ q)</th>
<th>(p ⊕ ¬q)</th>
<th>((p ⊕ q) ∨ (p ⊕ ¬q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

(b) \((p ∨ q) → (p ⊕ q)\)

Solution:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p ∨ q)</th>
<th>(p ⊕ q)</th>
<th>((p ∨ q) → (p ⊕ q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

(c) \(p ↔ ¬p\)

Solution:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(¬p)</th>
<th>(p ↔ ¬p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

5. Non-equivalence
Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.

(a) \(p → q\) \quad q → p

Solution:
When \(p = T\) and \(q = F\), then \(p → q \equiv F\), but \(q → p \equiv T\).

(b) \(p → (q ∧ r)\) \quad (p → q) ∧ r

Solution:
When \(p = F\) and \(r = F\), then \(p → (q ∧ r) \equiv T\), but \((p → q) ∧ r \equiv F\).
6. Circuitous
Translate the following circuit into a logical expression.

Solution:
\[\neg (\neg p \lor (p \land \neg q)) \]