
CSE 311: Foundations of Computing I
Homework 6 (due Wed, February, 26 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. You may
use results from lecture, the theorems handout, and previous homeworks without proof. Read the CSE 311
grading guidelines from the course webpage for more details and for permitted resources and collaboration.

1. Running out of time. . . (20 points)
Let c > 0 be an integer. The following recursive definition describes the running time of a recursive algorithm.

T (0) = 0

T (n) ≤ c for all n ≤ 20

T (n) = T

(⌊
3n

4

⌋)
+ T

(⌊n
5

⌋)
+ cn for all n > 20

Prove by strong induction that T (n) ≤ 20cn for all integers n ≥ 0.
Hint: The only fact about b c that you will need is that, when x ≥ 0, bxc is an integer and 0 ≤ bxc ≤ x.

2. Happily Ever After (20 points)
Let S be the set defined as follows.

Basis Step: 4 ∈ S; 7 ∈ S

Recursive Step: if x, y ∈ S, then x+ y ∈ S.

Show that, for all integers n ≥ 18, we have n ∈ S.
Hint: Strong induction is the right tool here since the quantifier is not over S.

3. It’s On My List (20 points)
We define the set Lists as follows:

Basis Elements: [ ] ∈ Lists.
Recursive Step: for any x ∈ Z, if L ∈ Lists, then [x L] ∈ Lists.

These are lists (essentially, linked lists) with integers stored in the nodes.
We can define a sum function on the set Lists as follows:

sum([ ]) = 0

sum([x L]) = x+ sum(L) for any x ∈ Z and L ∈ Lists.

and the following shift function, which takes two lists as arguments, appends the elements from the first list to
the front of the second list but in reverse order:

shift([ ], R) = R for any R ∈ Lists
shift([x L], R) = shift(L, [x R]) for any x ∈ Z and L,R ∈ Lists

from which we get the reverse function on lists.

reverse(L) = shift(L, [ ]) for all L ∈ Lists

(Since the second list passed to shift is empty, the result is just the reversal of the first list.)
(a) [3 Points] Show the steps in computing sum(reverse([12 [3 [45 [ ]]]])).
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(b) [17 Points] Prove that we have sum(reverse(L)) = sum(L) for all L ∈ Lists by first proving the following
stronger statement by structural induction:
For all L,R ∈ Lists, sum(shift(L,R)) = sum(L) + sum(R).

4. Less Than Meets the Tree (20 points)
Consider the following definition of a (binary)Tree:

Bases Step: Nil is a Tree.

Recursive Step: If L is a Tree and R is a Tree and x is an integer, then Tree(x, L,R) is a Tree.

The standard Binary Search Tree insertion function can be written as the following:

insert(v, Nil) = Tree(v, Nil, Nil)

insert(v, Tree(x, L,R))) =

{
Tree(x, insert(v, L), R) if v < x

Tree(x, L, insert(v,R)) otherwise.

Next, define a program less which checks if an entire Binary Search Tree is less than a provided integer v:

less(v, Nil) = true

less(v, Tree(x, L,R)) = x < v and less(v, L) and less(v,R)

Prove that, for all b ∈ Z, x ∈ Z and all trees T , if less(b, T ) and x < b, then less(b, insert(x, T )). In English,
this means that, given an upper bound on the elements in a BST, if you insert something that meets that upper
bound, it is still an upper bound.

You should use structural induction on T for this question, but there are a few tricky bits that are worth
pointing out up-front:

• You are proving an implication by induction. This means, in your Base Case, you assume the first part
and prove the second one.

• Because of this, there will be two implications going on in your Induction Step. This can be very tricky.
You will assume both your IH and the left side of what you’re trying to prove. You will end up needing
to use both of them at some point in your proof.

• This is the most difficult proof we have given you to date. It would be a mistake to start it on the last
day.

5. Stringing it together (20 points)
For each of the following, construct regular expressions that match the given set of strings:

(a) [5 Points] The set of all binary strings that end with 0 and have even length, or start with 1 and have odd
length.

(b) [5 Points] The set of all binary strings with the number of 0s congruent to 2 modulo 3.

(c) [5 Points] The set of all binary strings that contain at least two 1’s and at most two 0’s.

(d) [5 Points] The set of all binary strings that don’t contain 001.
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Submit and check your answers to this question here:

https://grinch.cs.washington.edu/cse311/regex

Think carefully about your answer to make sure it is correct before submitting.
Do not include blanks since these count as characters.
You have only 5 chances to submit a correct answer.

6. Extra Credit: Magical Pebbles (0 points)
Consider an infinite sequence of positions 1, 2, 3, . . . and suppose we have a pebble at position 1 and another
pebble at position 2. In each step, we choose one of the pebbles and move it according to the following rule: Say
we decide to move the pebble at position i; if the other pebble is not at any of the positions i+1, i+2, . . . , 2i,
then it goes to 2i, otherwise it goes to 2i+ 1.

For example, in the first step, if we move the pebble at position 1, it will go to 3 and if we move the pebble
at position 2 it will go to 4. Note that, no matter how we move the pebbles, they will never be at the same
position.

Use induction to prove that, for any given positive integer n, it is possible to move one of the pebbles to
position n. For example, if n = 7 first we move the pebble at position 1 to 3. Then, we move the pebble at
position 2 to 5 Finally, we move the pebble at position 3 to 7.
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