
CSE 311: Foundations of Computing I
Homework 5 (due Feb 12, 2020 at 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. You may
use results from lecture, the theorems handout, and previous homeworks without proof. Read the CSE 311
grading guidelines from the course webpage for more details and for permitted resources and collaboration.

1. GCDs are easier than factoring (10 points)
(a) [1 Point] Compute gcd(0, 1275965).

(b) [3 Points] Compute gcd(217, 69) using Euclid’s Algorithm.

(c) [6 Points] Compute gcd(91, 434) using Euclid’s Algorithm. Show your intermediate results.

2. Inverted Sugar (20 points)
(a) [5 Points] Compute the multiplicative inverse of 17 modulo 122 using the Extended Euclidean Algorithm.

Show your work.

(b) [5 Points] Find all solutions x with 0 ≤ x < 43 to the following equation:

67x ≡ 3 (mod 43)

Show your work.

(c) [5 Points] Prove that there are no integer solutions to the following equation:

51x ≡ 2 (mod 141)

(d) [5 Points] Find all solutions to
10x ≡ 70 (mod 135)

using the property that you proved in Problem 5 of Homework 4 (“Modular Numerology”).

3. Palindromes (20 points)
We say an integer is palindromic if the digits read the same when written forward or backward. Prove that
every palindromic integer with an even number of digits is divisible by 11. (No induction proofs.)

Hint 1: 10 ≡ −1(mod 11).
Hint 2: Write the number in terms of its 2n decimal digits as d0 + d1 · 10 + d2 · 102 + · · · d2n−1 · 102n−1

4. The Prime Generation (10 points)
Prove or disprove: For every integer x > 0, x2 + x+ 41 is a prime number.

5. An Equality (20 points)
Prove that for every positive integer n, the following equality is true:

1 · 21 + 2 · 22 + · · ·+ n · 2n = (n− 1)2n+1 + 2.
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6. An Inequality (20 points)
Prove that for all n ∈ N and all x ∈ R with x > −2 the inequality (2 + x)n ≥ 2n + n2n−1x is true.

7. Extra credit: Exponential Fun (0 points)
Since a mod m ≡ a (mod m), we know that we can reduce the base of an exponent modulo m : ak ≡
(a mod m)k (mod m). But the same is not true of the exponent itself! That is, we cannot write ak ≡
ak mod m (mod m). This is easily seen to be false in general. Consider, for instance, that 210 mod 3 = 1 but
210 mod 3 mod 3 = 21 mod 3 = 2.
The correct law for the exponent is more subtle. We will prove it in steps....

a) Let R = {n ∈ Z : 1 ≤ n ≤ m− 1 ∧ gcd(n,m) = 1}. Define the set aR = {ax mod m : x ∈ R}. Prove
that aR = R for every integer a > 0 with gcd(a,m) = 1.

b) Consider the product of all the elements in R modulo m and the elements in aR modulo m. By comparing
those two expressions, conclude that for all a ∈ R we have aϕ(m) ≡ 1 (mod m), where ϕ(m) = |R|.

c) Use the last result to show that, for any b ≥ 0 and a ∈ R, we have ab ≡ ab mod φ(m) (mod m).

d) Now suppose that y = xe mod m for some x with gcd(x,m) = 1 and integer e ≥ 0 such that
gcd(e, ϕ(m)) = 1. Let d = e−1 mod ϕ(m). Prove that yd ≡ x (mod m).

e) Prove the following two facts about the function ϕ: First, if p is prime, then φ(p) = p − 1. Second, for
any positive integers a and b with gcd(a, b) = 1, we have ϕ(ab) = ϕ(a)ϕ(b).

These facts together form the basis for the most widely used public key encryption system. One chooses m = pq
for large primes p and q, and chooses a nice value of e. To send a message x one computes y = xe mod m and
sends the encryption y. To decrypt, one computes yd mod m. Its security relies on it being hard to compute d
from just e and m. What are some things that could go wrong with this scheme?
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