List of basic equivalences in propositional logic.
List of basic identities in boolean algebra.
List of inference rules for propositional and predicate logic.
Intro $\wedge$ $\rule{A; B}{A \wedge B}$
Elim $\wedge$ $\rule{A\wedge B}{A,B}$
Intro $\vee$ $\rule{A}{A\vee B, B\vee A}$
Elim $\vee$ $\rule{A\vee B; \neg A}{B}$
Direct Proof Rule $\rule{A\implies B}{A\rightarrow B}$
Modus Ponens $\rule{A ; A\rightarrow B}{B}$
Excluded Middle$\rule{}{A\vee\neg A}$
Elim $\forall$ $\rule{\forall x. P(x)}{P(a) \text{ for any } a}$
Intro $\forall$ $\rule{P(a); a \text{ is } \color{MediumVioletRed}{\text{arbitrary}}}{\forall x. P(x)}$
The name $a$ stands for an arbitrary value in the domain. No other name in $P$ depends on $a$.
Intro $\exists$ $\rule{P(c) \text{ for some } c}{\exists x. P(x)}$
Elim $\exists$ $\rule{\exists x. P(x)}{P(c) \text{ for a } \color{MediumVioletRed}{\text{specific }} c }$
The name $c$ is fresh and stands for a value in the domain where $P(c)$ is true. List all dependencies for $c$.
List of definitions related to set theory.