Section 8: CFGs, Relations, DFAs, NFAs, and Minimization

1. CFGs

Construct CFGs for the following languages:

(a) All binary strings that end in 00.

Solution:

\[S \rightarrow 0S | 1S | 00 \]

(b) All binary strings that contain at least three 1’s.

Solution:

\[S \rightarrow TTT \\
T \rightarrow 0T | T0 | 1T | 1 \]

(c) All binary strings with an equal number of 1’s and 0’s.

Solution:

\[S \rightarrow 0S1S | 1S0S | \varepsilon \]

and

\[S \rightarrow SS | 0S1 | 1S0 | \varepsilon \]

both work. Note: The fact that all the strings generated have the property is easy to show (by induction), but the fact that one can generate all strings with the property is trickier. To argue that each of these grammars are enough, one would need to consider how the difference between the # of 0’s seen and the # of 1’s seen occurs in prefixes of any string with the property.
2. Relations

(a) Draw the transitive-reflexive closure of \{(1, 2), (2, 3), (3, 4)\}.

Solution:

\begin{center}
\begin{tikzpicture}
 \node (1) at (0,0) {1};
 \node (2) at (-2,-2) {2};
 \node (3) at (0,-1.05) {3};
 \node (4) at (2,-2) {4};

 \draw[->] (1) edge (2);
 \draw[->] (1) edge (3);
 \draw[->] (1) edge (4);
 \draw[->] (2) edge (1);
 \draw[->] (2) edge (4);
 \draw[->] (3) edge (4);
 \draw[->] (3) edge (1);
 \draw[->] (4) edge (2);
 \draw[->] (4) edge (3);
\end{tikzpicture}
\end{center}

(b) Suppose that \(R \) is reflexive. Prove that \(R \subseteq R^2 \).

Solution:

Suppose \((a, b) \in R\). Since \(R \) is reflexive, we know \((b, b) \in R\) as well. Since there is a \(b \) such that \((a, b) \in R \) and \((b, b) \in R\), it follows that \((a, b) \in R^2\). Thus, \(R \subseteq R^2 \).

(c) Consider the relation \(S = \{(x, y) : x^2 = y^2\} \) on \(\mathbb{R} \). Prove that \(S \) is reflexive, transitive, and symmetric.

Solution:

Consider \(x \in \mathbb{R} \). Note that by definition of equality, \(x^2 = x^2 \); so, \((x, x) \in R\); so, \(R \) is reflexive.

Consider \((x, y) \in R\). Then, \(x^2 = y^2 \). It follows that \(y^2 = x^2 \); so, \((y, x) \in R\). So, \(R \) is symmetric.

Suppose \((x, y) \in R \) and \((y, z) \in R\). Then, \(x^2 = y^2 \), and \(y^2 = z^2 \). Since equality is transitive, \(x^2 = z^2 \). So, \((x, z) \in R\). So, \(R \) is transitive.
3. DFAs, Stage 1

Construct DFAs to recognize each of the following languages. Let \(\Sigma = \{0,1,2,3\} \).

(a) All binary strings.

\[
\begin{align*}
q_0 & : \text{binary strings} \\
q_1 & : \text{strings that contain a character which is not 0 or 1.}
\end{align*}
\]

(b) All strings whose digits sum to an even number.

4. DFAs, Stage 2

Construct DFAs to recognize each of the following languages. Let \(\Sigma = \{0,1\} \).

(a) All strings which do not contain the substring 101.
\(q_3 \): String that contain 101.

\(q_2 \): Strings that don’t contain 101 and end in 10.

\(q_1 \): Strings that don’t contain 101 and end in 1.

\(q_0 \): \(\varepsilon \), 0, Strings that don’t contain 101 and end in 00.

(b) All strings containing at least two 0’s and at most one 1.

Solution:

\(q_6 \)

(c) All strings containing an even number of 1’s and an odd number of 0’s and not containing the substring 10.

Solution:
5. NFAs

(a) What language does the following NFA accept?

![NFA Diagram]

Solution:
All strings of only 0’s and 1’s not containing more than one 1.

(b) Create an NFA for the language “all binary strings that have a 1 as one of the last three digits.”

Solution:
The following is one such NFA:

![NFA Diagram]

6. Minimization

Minimize the following DFA:

![DFA Diagram]

Solution:

Step 1: q_0, q_2 are final states and the rest are not final. So, we start with the initial partition with the following groups: group 1 is $\{q_0, q_2\}$ and group 2 is $\{q_1, q_3, q_4\}$.

Step 2: q_1 is sending a to group 1 while q_3, q_4 are sending a to group 2. So, we divide group 2. We get the following groups: group 1 is $\{q_0, q_2\}$, group 3 is $\{q_1\}$ and group 4 is $\{q_3, q_4\}$.

Step 3: q_0 is sending a to group 3 and q_2 is sending a to group 4. So, we divide group 1. We will have the following groups: group 3 is $\{q_1\}$, group 4 is $\{q_3, q_4\}$, group 5 is $\{q_0\}$ and group 6 is $\{q_2\}$.

The minimized DFA is the following: