1. Structural Induction

(a) Consider the following recursive definition of strings Σ^* over an alphabet Σ.

Basis Step: ϵ is a string

Recursive Step: If w is a string and $a \in \Sigma$ is a character then wa is a string.

Recall the following recursive definition of the function len:

$$
\text{len}(\epsilon) = 0 \\
\text{len}(wa) = 1 + \text{len}(w)
$$

Now, consider the following recursive definition:

$$
\text{double}(\epsilon) = \epsilon \\
\text{double}(wa) = \text{double}(w)aa
$$

Prove that for any string x, $\text{len}($double$(x)) = 2\text{len}(x)$.

(b) Consider the following definition of a (rooted binary) Tree:

Basis Step: \bullet is a Tree.

Recursive Step: If L is a Tree and R is a Tree then $\text{Tree}(\bullet, L, R)$ is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\text{leaves}(\bullet) = 1 \\
\text{leaves}(\text{Tree}(\bullet, L, R)) = \text{leaves}(L) + \text{leaves}(R)
$$

Also, recall the definition of size on trees:

$$
|\bullet| = 1 \\
|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|
$$

Prove that $\text{leaves}(T) \geq |T|/2 + 1/2$ for all Trees T.

2. Regular Expressions

(a) Write a regular expression that matches base 10 non-negative numbers (e.g., there should be no leading zeroes).

(b) Write a regular expression that matches all non-negative base-3 numbers that are divisible by 3.

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring “000”.