1. Structural Induction

(a) Consider the following recursive definition of strings Σ* over an alphabet Σ.
Basis Step: ε is a string
Recursive Step: If w is a string and a ∈ Σ is a character then wa is a string.
Recall the following recursive definition of the function len:

 $\begin{aligned} & \operatorname{len}(\epsilon) &= 0 \\ & \operatorname{len}(wa) &= 1 + \operatorname{len}(w) \end{aligned}$

Now, consider the following recursive definition:

 $\begin{array}{ll} \operatorname{\mathsf{double}}(\epsilon) & = \epsilon \\ \operatorname{\mathsf{double}}(wa) & = \operatorname{\mathsf{double}}(w)aa. \end{array}$

Prove that for any string x, len(double(x)) = 2len(x).

Solution:

For a string x, let P(x) be "len(double(x)) = 2len(x). We prove P(x) for all strings $x \in \Sigma^*$ by structural induction.

Base Case. We show $P(\epsilon)$ holds. By definition $len(double(\epsilon)) = len(\epsilon) = 0$. On the other hand, $2len(\epsilon) = 0$ as desired.

Induction Hypothesis. Suppose $\mathsf{P}(w)$ holds for some arbitrary string $w \in \Sigma^*$.

Induction Step. We show that $\mathsf{P}(wa)$ holds for any character $a \in \Sigma$.

len(double(wa)) = len(double(w)aa)	[By Definition of $double$]
= 1 + len(double(w)a)	[By Definition of len]
= 1 + 1 + len(double(w))	[By Definition of len]
=2+2len(w)	[By IH]
= 2(1 + len(w))	[Algebra]
=2(len(wa))	$[By \ Definition \ of \ len]$

This proves $\mathsf{P}(wa)$.

Thus, $\mathsf{P}(x)$ holds for all strings $x \in \Sigma^*$ by structural induction.

(b) Consider the following definition of a (rooted binary) ${\bf Tree}:$

Basis Step: • is a Tree.

Recursive Step: If L is a **Tree** and R is a **Tree** then $\text{Tree}(\bullet, L, R)$ is a **Tree**. The function leaves returns the number of leaves of a **Tree**. It is defined as follows:

$$\begin{split} & \mathsf{leaves}(\bullet) &= 1 \\ & \mathsf{leaves}(\mathsf{Tree}(\bullet, L, R)) &= \mathsf{leaves}(L) + \mathsf{leaves}(R) \end{split}$$

Also, recall the definition of size on trees:

$$\begin{split} |\bullet| &= 1 \\ |\texttt{Tree}(\bullet,L,R)| &= 1 + |L| + |R| \end{split}$$

Prove that $\mathsf{leaves}(T) \ge |T|/2 + 1/2$ for all Trees T.

Solution:

For a rooted binary tree T, let P(T) be $leaves(T) \ge |T|/2 + 1/2$. We prove P(T) for all rooted binary trees T by structural induction.

Base Case. We show that $P(\bullet)$ holds. By definition of leaves(.), $leaves(\bullet) = 1$ and $|\bullet| = 1$. So, $leaves(\bullet) = 1 \ge 1/2 + 1/2 = |\bullet|/2 + 1/2$.

Induction Hypothesis: Suppose $\mathsf{P}(L)$ and $\mathsf{P}(R)$ hold for some arbitrary rooted binary trees L and R.

Induction Step: We prove that $P(Tree(\bullet, L, R))$ holds.

$$\begin{aligned} \mathsf{leaves}(\mathsf{Tree}(\bullet, L, R)) &= \mathsf{leaves}(L) + \mathsf{leaves}(R) & [\text{By Definition of leaves}] \\ &\geq (|L|/2 + 1/2) + (|R|/2 + 1/2) & [\text{By IH}] \\ &= (|L| + |R| + 1)/2 + 1/2 \\ &= |\mathsf{Tree}(\bullet, L, R)|/2 + 1/2 & [\text{By Definition of size}] \end{aligned}$$

This proves $\mathsf{P}(\mathsf{Tree}(\bullet, L, R))$.

Thus, the P(T) holds for all rooted binary trees T.

2. Regular Expressions

(a) Write a regular expression that matches base 10 non-negative numbers (e.g., there should be no leading zeroes).

Solution:

 $0 \cup ((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^*)$

(b) Write a regular expression that matches all non-negative base-3 numbers that are divisible by 3. Solution:

$$0 \cup ((1 \cup 2)(0 \cup 1 \cup 2)^*0)$$

(c) Write a regular expression that matches all binary strings that contain the substring "111", but not the substring "000".

Solution:

 $(01 \cup 001 \cup 1^*)^* (0 \cup 00 \cup \varepsilon) 111 (01 \cup 001 \cup 1^*)^* (0 \cup 00 \cup \varepsilon)$

(If you don't want the substring 000, the only way you can produce 0s is if there are only one or two 0s in a row, and they are immediately followed by a 1 or the end of the string.)