
CSE 311: Foundations of Computing I Spring 2020

Section 6: Induction and Strong Induction

1. Harmonic 9s

(a) Prove that 9 | n3 + (n + 1)3 + (n + 2)3 for all n > 1 by induction.

Solution:
Let P (n) be “9 | n3 + (n + 1)3 + (n + 2)3”. We will prove P (n) for all integers n > 1 by induction.

Base Case (n = 2): 23 + (2 + 1)3 + (2 + 2)3 = 8 + 27 + 64 = 99 = 9 · 11, so 9 | 23 + (2 + 1)3 + (2 + 2)3,
so P (2) holds.

Induction Hypothesis: Assume that 9 | j3 + (j + 1)3 + (j + 2)3 for an arbitrary integer j > 1. Note
that this is equivalent to assuming that j3 + (j + 1)3 + (j + 2)3 = 9k for some integer k.

Induction Step: Goal: Show 9 | (j + 1)3 + (j + 2)3 + (j + 3)3

(j + 1)3 + (j + 2)3 + (j + 3)3 = (j + 3)3 + j3 + (j + 1)3 + (j + 2)3 − j3 Rearrange, add and subtract j3

= (j + 3)3 + 9k − j3 for some integer k [Induction Hypothesis]
= j3 + 9j2 + 27j + 27 + 9k − j3

= 9j2 + 27j + 27 + 9k

= 9(j2 + 3j + 3 + k)

So 9 | (j + 1)3 + (j + 2)3 + (j + 3)3, so P (j)→ P (j + 1) for an arbitrary integer j > 1.

Conclusion: P (n) holds for all integers n > 1 by induction.

(b) Prove that 6n + 6 < 2n for all n ≥ 6.

Solution:
Let P (n) be “6n + 6 < 2n”. We will prove P (n) for all integers n ≥ 6 by induction.

Base Case (n = 6): 6 · 6 + 6 = 42 < 64 = 26, so P (6) holds.

Induction Hypothesis: Assume that 6j + 6 < 2j for an arbitrary integer j ≥ 6.

Induction Step: Goal: Show 6(j + 1) + 6 < 2j+1

6(j + 1) + 6 = 6j + 6 + 6
< 2j + 6 [Induction Hypothesis]
< 2j + 2j [Since 2j > 6, since j ≥ 6]
< 2 · 2j

< 2j+1

So P (j)→ P (j + 1) for an arbitrary integer j ≥ 6.

Conclusion: P (n) holds for all integers n ≥ 6 by induction.

(c) Define
Hi = 1 + 1

2 + · · ·+ 1
i
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Prove that H2n ≥ 1 + n
2 for n ∈ N.

Solution:
We define Hi more formally as

∑i
k=1

1
k . Let P (n) be “H2n ≥ 1 + n

2 ”. We will prove P (n) for all n ∈ N
by induction.

Base Case (n = 0): H20 = H1 =
∑1

k=1
1
k = 1 ≥ 1 + 0

2 , so P (0) holds.

Induction Hypothesis: Assume that H2j ≥ 1 + j
2 for an arbitrary integer j ∈ N.

Induction Step: Goal: Show H2j+1 ≥ 1 + j + 1
2

H2j+1 =
2j+1∑
k=1

1
k

=
2j∑

k=1

1
k

+
2j+1∑

k=2j+1

1
k

≥ 1 + j

2 +
2j+1∑

k=2j+1

1
k

[Induction Hypothesis]

≥ 1 + j

2 + 2j · 1
2j+1 [There are 2j terms in [2j + 1,2j+1] and each is at least 1

2j+1 ]

≥ 1 + j

2 + 2j

2j+1

≥ 1 + j

2 + 1
2 ≥ 1 + j + 1

2

So P (j)→ P (j + 1) for an arbitrary integer j ∈ N.

Conclusion: P (n) holds for all integers n ∈ N by induction.

2. Walk the Dawgs

Suppose a dog walker takes care of n ≥ 12 dogs. The dog walker is not a strong person, and will walk dogs in
groups of 4 or 5 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n
dogs into groups of 4 or 5.

Solution:

Let P (n) be “a group with n dogs can be split into groups of 4 or 5 dogs.” We will prove P (n) for all natural
numbers n ≥ 12 by strong induction.

Base Case n = 12, 13, 14, or 15: 12 = 4 + 4 + 4, 13 = 4 + 4 + 5, 14 = 4 + 5 + 5, 15 = 5 + 5 + 5. So P (12),
P (13), P (14), and P (15) hold.

Induction Hypothesis: Assume that P (12), . . . , P (n) hold for n ≥ 15.

Induction Step: Goal: Show n+1 dogs can be split into groups of size 4 or 5. We first form one group
of 4 dogs. Then we can divide the remaining n−3 dogs into groups of 4 or 5 by the assumption P (n−3).
(Note that n ≥ 15 and so n− 3 ≥ 12; thus, P (n− 3) is among our assumptions P (12), . . . , P (n).)

Conclusion: P (n) holds for all integers n ≥ 12 by strong induction.
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3. Cantelli’s rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the
function f :

f(0) = 0
f(1) = 1
f(n) = 2f(n− 1)− f(n− 2) for n ≥ 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:
Let P (n) be “f(n) = n". We prove that P (n) is true for all n ∈ N by strong induction on n.

Base Cases (n = 0, n = 1): f(0) = 0 and f(1) = 1 by definition.

Induction Hypothesis: Assume that P (0) ∧ P (1) ∧ . . . P (n − 1) are true for some fixed but arbitrary
n− 1 ≥ 1.

Induction Step: We show P (n):

f(n) = 2f(n− 1)− f(n− 2) Definition of f

= 2(n− 1)− (n− 2) Induction Hypothesis on P (n− 1) and P (n− 2)
= n Algebra

Note that we have indeed assumed P (n− 1) ∧ P (n− 2) because n ≥ 2 and we showed base cases P (0)
and P (1).

Conclusion: Therefore, by strong induction P (n) is true for all n ∈ N.
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