Section 6: Induction and Strong Induction

1. Harmonic 9s

(a) Prove that $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ for all $n>1$ by induction.

Solution:

Let $P(n)$ be " $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ ". We will prove $P(n)$ for all integers $n>1$ by induction.
Base Case $(n=2): 2^{3}+(2+1)^{3}+(2+2)^{3}=8+27+64=99=9 \cdot 11$, so $9 \mid 2^{3}+(2+1)^{3}+(2+2)^{3}$, so $P(2)$ holds.

Induction Hypothesis: Assume that $9 \mid j^{3}+(j+1)^{3}+(j+2)^{3}$ for an arbitrary integer $j>1$. Note that this is equivalent to assuming that $j^{3}+(j+1)^{3}+(j+2)^{3}=9 k$ for some integer k.

Induction Step: Goal: Show $9 \mid(j+1)^{3}+(j+2)^{3}+(j+3)^{3}$

$$
\begin{array}{rlrl}
(j+1)^{3}+(j+2)^{3}+(j+3)^{3} & =(j+3)^{3}+j^{3}+(j+1)^{3}+(j+2)^{3}-j^{3} & & \text { Rearrange, add and subtract } j^{3} \\
& =(j+3)^{3}+9 k-j^{3} \text { for some integer } k & & \text { [Induction Hypothesis] } \\
& =j^{3}+9 j^{2}+27 j+27+9 k-j^{3} & & \\
& =9 j^{2}+27 j+27+9 k & & \\
& =9\left(j^{2}+3 j+3+k\right) &
\end{array}
$$

So $9 \mid(j+1)^{3}+(j+2)^{3}+(j+3)^{3}$, so $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j>1$.
Conclusion: $P(n)$ holds for all integers $n>1$ by induction.
(b) Prove that $6 n+6<2^{n}$ for all $n \geq 6$.

Solution:

Let $P(n)$ be " $6 n+6<2^{n}$ ". We will prove $P(n)$ for all integers $n \geq 6$ by induction.
Base Case $(n=6): 6 \cdot 6+6=42<64=2^{6}$, so $P(6)$ holds.
Induction Hypothesis: Assume that $6 j+6<2^{j}$ for an arbitrary integer $j \geq 6$.
Induction Step: Goal: Show $6(j+1)+6<2^{j+1}$

$$
\begin{aligned}
6(j+1)+6 & =6 j+6+6 & & \\
& <2^{j}+6 & & {[\text { Induction Hypothesis] }} \\
& <2^{j}+2^{j} & & {\left[\text { Since } 2^{j}>6, \text { since } j \geq 6\right] } \\
& <2 \cdot 2^{j} & & \\
& <2^{j+1} & &
\end{aligned}
$$

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \geq 6$.
Conclusion: $P(n)$ holds for all integers $n \geq 6$ by induction.
(c) Define

$$
H_{i}=1+\frac{1}{2}+\cdots+\frac{1}{i}
$$

Prove that $H_{2^{n}} \geq 1+\frac{n}{2}$ for $n \in \mathbb{N}$.

Solution:

We define H_{i} more formally as $\sum_{k=1}^{i} \frac{1}{k}$. Let $P(n)$ be " $H_{2^{n}} \geq 1+\frac{n}{2}$ ". We will prove $P(n)$ for all $n \in \mathbb{N}$ by induction.

Base Case $(n=0): H_{2^{0}}=H_{1}=\sum_{k=1}^{1} \frac{1}{k}=1 \geq 1+\frac{0}{2}$, so $P(0)$ holds.
Induction Hypothesis: Assume that $H_{2^{j}} \geq 1+\frac{j}{2}$ for an arbitrary integer $j \in \mathbb{N}$.
Induction Step: Goal: Show $H_{2^{j+1}} \geq 1+\frac{j+1}{2}$

$$
\begin{aligned}
H_{2^{j+1}} & =\sum_{k=1}^{2^{j+1}} \frac{1}{k} \\
& =\sum_{k=1}^{2^{j}} \frac{1}{k}+\sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \\
& \geq 1+\frac{j}{2}+\sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \quad \quad \text { [Induction Hypothesis] } \\
& \geq 1+\frac{j}{2}+2^{j} \cdot \frac{1}{2^{j+1}} \quad\left[\text { There are } 2^{j} \text { terms in }\left[2^{j}+1,2^{j+1}\right] \text { and each is at least } \frac{1}{2^{j+1}}\right] \\
& \geq 1+\frac{j}{2}+\frac{2^{j}}{2^{j+1}} \\
& \geq 1+\frac{j}{2}+\frac{1}{2} \geq 1+\frac{j+1}{2}
\end{aligned}
$$

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \in \mathbb{N}$.
Conclusion: $P(n)$ holds for all integers $n \in \mathbb{N}$ by induction.

2. Walk the Dawgs

Suppose a dog walker takes care of $n \geq 12$ dogs. The dog walker is not a strong person, and will walk dogs in groups of 4 or 5 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs into groups of 4 or 5 .

Solution:

Let $P(n)$ be "a group with n dogs can be split into groups of 4 or 5 dogs." We will prove $P(n)$ for all natural numbers $n \geq 12$ by strong induction.

Base Case $n=12,13,14$, or $15: 12=4+4+4,13=4+4+5,14=4+5+5,15=5+5+5$. So $P(12)$, $P(13), P(14)$, and $P(15)$ hold.

Induction Hypothesis: Assume that $P(12), \ldots, P(n)$ hold for $n \geq 15$.
Induction Step: Goal: Show n+1 dogs can be split into groups of size 4 or 5 . We first form one group of 4 dogs. Then we can divide the remaining $n-3$ dogs into groups of 4 or 5 by the assumption $P(n-3)$. (Note that $n \geq 15$ and so $n-3 \geq 12$; thus, $P(n-3)$ is among our assumptions $P(12), \ldots, P(n)$.)

Conclusion: $P(n)$ holds for all integers $n \geq 12$ by strong induction.

3. Cantelli's rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

Solution:

Let $P(n)$ be " $f(n)=n$ ". We prove that $P(n)$ is true for all $n \in \mathbb{N}$ by strong induction on n.
Base Cases $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition.
Induction Hypothesis: Assume that $P(0) \wedge P(1) \wedge \ldots P(n-1)$ are true for some fixed but arbitrary $n-1 \geq 1$.

Induction Step: We show $P(n)$:

$$
\begin{aligned}
f(n) & =2 f(n-1)-f(n-2) & & \text { Definition of } f \\
& =2(n-1)-(n-2) & & \text { Induction Hypothesis on } P(n-1) \text { and } P(n-2) \\
& =n & & \text { Algebra }
\end{aligned}
$$

Note that we have indeed assumed $P(n-1) \wedge P(n-2)$ because $n \geq 2$ and we showed base cases $P(0)$ and $P(1)$.

Conclusion: Therefore, by strong induction $P(n)$ is true for all $n \in \mathbb{N}$.

