CSE 311: Foundations of Computing I

Spring 2020

Section 5: Number Theory and Induction

1. GCD

(a) Calculate ged (100, 50).
Solution:
50
(b) Calculate ged(17,31).
Solution:
1
(¢) Find the multiplicative inverse of 6 modulo 7.
Solution:
6
(d) Does 49 have an multiplicative inverse modulo 77

Solution:

No. Intuitively, this is because 49z for any x is going to be 0 mod 7, which means it can never be 1.

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y =1 (mod 33). You should
use the extended Euclidean Algorithm. Your answer should be in the range 0 < y < 33.

Solution:

First, we find the GCD:

ged(33,7) = ged

33=[7]-4+5
7=[5]-1+2
5=[2]-2+1
2=1-240

Next, we re-arrange equations (1) - (3) by solving for the remainder:

1=5-[2]-2
2=7-[5]1
5=33-[7] 4
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Now, we backward substitute into the boxed numbers using the equations:

1=5-[2] 2
=5-(7—[5]-1)-2
=3.[5]-7-2
=3-(33-[7]-4-7-2

=33-3+7--14

So, 1 =33-3+ ~ —14. Thus, 33 — 14 = 19 is the multiplicative inverse of 7 mod 33.

(b) Now, solve 7z =2 (mod 33) for all of its integer solutions z.
Solution:

Multiplying both sides by 19, we get that 19-7-2=2=19-2 =5 (mod 33). This means that the set
of solutions is {5+ 33k | k € Z}.

3. Induction

(a) For any n € N, define S,, to be the sum of the squares of the first n positive integers, or
Sp=1"+2+.. 4 n?
Prove that for all n € N, S,, = in(n+1)(2n + 1).
Solution:

Let P(n) be the statement “S, = ¢n(n+ 1)(2n + 1)” defined for all n € N. We prove that P(n) is true
for all n € N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, Sy = 0. Since #(0)(0+1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary k € N.
Induction Step. Examining Sk 1, we see that
Spr1=124+22+ -+ k2 + (k+1)2 =8, + (k+1)2

By the induction hypothesis, we know that S} = %k(k + 1)(2k + 1). Therefore, we can substitute
and rewrite the expression as follows:

Si41 = Sk + (k+1)2
— %k(k+1)(2k+1)+(k+1)2
=(k+1) <ék(2k+ 1)+ (k+ 1))
_ é(k +1) (k(2k + 1) + 6(k + 1))
:é(k:—kl) (2K2 + Tk + 6)
= S(k+ 1)(k+2)(2% +3)

. é(k +1)((k+1) + 1)(2(k+1) +1)
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Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n € N by induction.

(b) Define the triangle numbers as A\, = 14+2+---4n, where n € N. We showed in lecture that A, = ”(";1).
Prove the following equality for all n € N:
0P+ 13 40P =A2
Solution:

First, note that A, = (04+142+---4+n). So, we are trying to prove (0> +13+---4n?) = (04+1+---4n)>
Let P(n) be the statement:

P 4+134. 40 =0+14---+n)
We prove that P(n) is true for all n € N by induction on n.

Base Case. 03 = 02, so P(0) holds.
Induction Hypothesis. Suppose that P(k) is true for some arbitrary k € N.

Induction Step. We show P(k + 1):

O+ 13- (E+1)2 =0 +13 4+ + &)+ (k+1)® [Associativity ]
=(0+1+---4+k)2+(k+1)3 [by Induction Hypothesis]

2
= <k(k2+1)) +(k+1)3 [Substitution from note/class]
k2
= (k+1)? (22 + (k+ 1)) [Factor (k + 1)?]
2
=(k+1)? (k + ik i 4) [Add via common denominator]
2 2
= (k+1)? (-2 [Factor numerator]
4
1 2)\?
= ((k X )2(/€ L )) [Take out the square]
=(04+14 -+ (k+1))? [Substitution from note/class]

Therefore, P(n) is true for all n € N by induction.

(¢) Prove for all n € N that if you have two groups of numbers, ay,--- ,a, and by,--- ,b,, such that
V(i € [n]). a; < by, then it must be that:

a1+ tap <by+---+0b,

Solution:

Let P(n) be that “a3 4+ -+ a, < by + -+ + by, for all groups of numbers such that V(i € [n]). a; < b;".
We prove this by induction on n:

Base Case (n = 0). In this case there are 0 terms on both sides so the sums on both sides are 0. So
the claim is true for n = 0.
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Induction Hypothesis. Suppose for some arbitrary k € N that a; +---ax < by + - - - by for all groups

of numbers aq,--- ,a; and by, -+, bx such that a; < b; for all i € [k]
Induction Step. Let the groups of numbers ai,--- ,ax+1 and by, -+ ,br1 be two groups such that
a; < b; for all i € [k +1].
Note that
a;+ -+ agrr = (a1 + -+ ag) + agy1 [Splitting the summation]

< (b1 + - +bg) + akt1 [By IH]
<(br+-- 4+ bk) +brpr [By Assumption]
<b+---+ bk+1 [Algebra]

Thus we have shown that if the claim is true for k, it is true for k + 1.

Therefore, we have shown the claim for all n € N by induction.

4. Casting Out Nines

(a) Suppose that a =b (mod m). Prove by induction that for every integer n > 1, a™ = b™ (mod m).

Solution:

Let P(n) be the statement “a™ = b (mod m)”. We prove that P(n) is true for all integers n > 1 by
induction.

Base Case. (n = 1) We have a! = a and b' = b, so we have a! = b' (mod m) by our assumption that
a =b (mod m) and hence P(1) is true.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary integer k > 1.

Induction Step. We need to prove that a**! = b**! (mod m). By the inductive hypothesis we have
a® = b* (mod m) and by the assumption we have a = b (mod m). Using the multiplicative
property of mods we have a* - a = b* - b (mod m). But this is just a**! = b**1 (mod m).

Thus, we can conclude that P(k + 1) is true.
Therefore, by induction P(n) is true for all integers n > 1.

(b) Let K € N. Prove that if K =0 (mod 9), then the sum of the digits of K is a multiple of 9.

Solution:

Write K = (dmdpm—1 -+ -dido)10 where do, ..., d,, are the base-10 digits of K. Then K = > ;" d;10°
by definition. We show that K =" d; (mod 9): Now 10 =1 (mod 9) and so by part (a) we know
that 10" = 1° (mod 9) for i > 1 which is just 10 =1 (mod 9). We also have 10° = 1. Therefore, for
any i = 0,...,m by the multiplicative property modulo 9, we have d;10° = d; (mod 9). We then apply
the sum property modulo 9 to derive that Z?io d;10° = Z;’;O d; (mod 9). The left-hand quantity is
just K by definition so we have K = Y7 d; (mod 9).

In particular, since K = 0 (mod 9) by assumption, we have > " d; = 0 (mod 9) and hence 9 divides
the sum of the digits of K which is what we wanted to prove.
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