Section 5: Number Theory and Induction

1. GCD

(a) Calculate gcd(100, 50).

Solution: 50

(b) Calculate gcd(17, 31).

Solution:

(c) Find the multiplicative inverse of 6 modulo 7.

```
Solution:
6
```

(d) Does 49 have an multiplicative inverse modulo 7?

Solution:

No. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be 1.

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.

Solution:

First, we find the GCD:

$\gcd(33,7) = \gcd(7,5)$	$33 = \boxed{7} \cdot 4 + 5$	(1)
$= \gcd(5,2)$	$7 = \boxed{5} \cdot 1 + 2$	(2)
$= \gcd(2,1)$	$5 = \boxed{2} \cdot 2 + 1$	(3)
$= \gcd(1,0)$	$2 = 1 \cdot 2 + 0$	(4)
=1		(5)

Next, we re-arrange equations (1) - (3) by solving for the remainder:

$$1 = 5 - \boxed{2} \cdot 2 \tag{6}$$

$$2 = 7 - \boxed{5} \cdot 1 \tag{7}$$

$$5 = 33 - \boxed{7} \cdot 4 \tag{8}$$

(9)

Now, we backward substitute into the boxed numbers using the equations:

$$1 = 5 - \lfloor 2 \rfloor \cdot 2$$

= 5 - (7 - 5 \cdot 1) \cdot 2
= 3 \cdot 5 - 7 \cdot 2
= 3 \cdot (33 - 7 \cdot 4) - 7 \cdot 2
= 33 \cdot 3 + 7 \cdot - 14

So, $1 = 33 \cdot 3 + 7 \cdot -14$. Thus, 33 - 14 = 19 is the multiplicative inverse of 7 mod 33.

(b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

Solution:

Multiplying both sides by 19, we get that $19 \cdot 7 \cdot z \equiv z \equiv 19 \cdot 2 \equiv 5 \pmod{33}$. This means that the set of solutions is $\{5 + 33k \mid k \in \mathbb{Z}\}$.

3. Induction

(a) For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or

$$S_n = 1^2 + 2^2 + \dots + n^2.$$

Prove that for all $n \in \mathbb{N}$, $S_n = \frac{1}{6}n(n+1)(2n+1)$.

Solution:

Let $\mathsf{P}(n)$ be the statement " $S_n = \frac{1}{6}n(n+1)(2n+1)$ " defined for all $n \in \mathbb{N}$. We prove that $\mathsf{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of no terms, so we have a sum of 0. Thus, $S_0 = 0$. Since $\frac{1}{6}(0)(0+1)((2)(0)+1) = 0$, we know that P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary $k \in \mathbb{N}$.

Induction Step. Examining S_{k+1} , we see that

$$S_{k+1} = 1^2 + 2^2 + \dots + k^2 + (k+1)^2 = S_k + (k+1)^2$$

By the induction hypothesis, we know that $S_k = \frac{1}{6}k(k+1)(2k+1)$. Therefore, we can substitute and rewrite the expression as follows:

$$S_{k+1} = S_k + (k+1)^2$$

= $\frac{1}{6}k(k+1)(2k+1) + (k+1)^2$
= $(k+1)\left(\frac{1}{6}k(2k+1) + (k+1)\right)$
= $\frac{1}{6}(k+1)\left(k(2k+1) + 6(k+1)\right)$
= $\frac{1}{6}(k+1)\left(2k^2 + 7k + 6\right)$
= $\frac{1}{6}(k+1)(k+2)(2k+3)$
= $\frac{1}{6}(k+1)((k+1)+1)(2(k+1) + 1)(2(k+1))$

1)

Thus, we can conclude that P(k+1) is true.

Therefore, because the base case and induction step hold, $\mathsf{P}(n)$ is true for all $n \in \mathbb{N}$ by induction.

(b) Define the triangle numbers as $\triangle_n = 1 + 2 + \dots + n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_n = \frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$0^3 + 1^3 + \dots + n^3 = \triangle_n^2$$

Solution:

First, note that $\triangle_n = (0+1+2+\cdots+n)$. So, we are trying to prove $(0^3+1^3+\cdots+n^3) = (0+1+\cdots+n)^2$. Let $\mathsf{P}(n)$ be the statement:

$$0^3 + 1^3 + \dots + n^3 = (0 + 1 + \dots + n)^2.$$

We prove that $\mathsf{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n.

Base Case. $0^3 = 0^2$, so $\mathsf{P}(0)$ holds.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary $k \in \mathbb{N}$.

Induction Step. We show P(k+1):

$$\begin{aligned} {}^{3}+1^{3}+\cdots(k+1)^{3} &= (0^{3}+1^{3}+\cdots+k^{3})+(k+1)^{3} & [\text{Associativity }] \\ &= (0+1+\cdots+k)^{2}+(k+1)^{3} & [\text{by Induction Hypothesis}] \\ &= \left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} & [\text{Substitution from note/class}] \\ &= (k+1)^{2}\left(\frac{k^{2}}{2^{2}}+(k+1)\right) & [\text{Factor } (k+1)^{2}] \\ &= (k+1)^{2}\left(\frac{k^{2}+4k+4}{4}\right) & [\text{Add via common denominator}] \\ &= (k+1)^{2}\left(\frac{(k+2)^{2}}{4}\right) & [\text{Factor numerator}] \\ &= \left(\frac{(k+1)(k+2)}{2}\right)^{2} & [\text{Take out the square}] \\ &= (0+1+\cdots+(k+1))^{2} & [\text{Substitution from note/class}] \end{aligned}$$

Therefore, $\mathsf{P}(n)$ is true for all $n \in \mathbb{N}$ by induction.

(c) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_1, \dots, a_n and b_1, \dots, b_n , such that $\forall (i \in [n]). a_i \leq b_i$, then it must be that:

$$a_1 + \dots + a_n \le b_1 + \dots + b_n$$

Solution:

Let P(n) be that " $a_1 + \cdots + a_n \leq b_1 + \cdots + b_n$ for all groups of numbers such that $\forall (i \in [n]). a_i \leq b_i$ ". We prove this by induction on n:

Base Case (n = 0). In this case there are 0 terms on both sides so the sums on both sides are 0. So the claim is true for n = 0.

Induction Hypothesis. Suppose for some arbitrary $k \in \mathbb{N}$ that $a_1 + \cdots + a_k \leq b_1 + \cdots + b_k$ for all groups of numbers a_1, \cdots, a_k and b_1, \cdots, b_k such that $a_i \leq b_i$ for all $i \in [k]$

Induction Step. Let the groups of numbers a_1, \dots, a_{k+1} and b_1, \dots, b_{k+1} be two groups such that $a_i \leq b_i$ for all $i \in [k+1]$.

Note that

$a_1 + \dots + a_{k+1} = (a_1 + \dots + a_k) + a_{k+1}$	[Splitting the summation]
$\leq (b_1 + \dots + b_k) + a_{k+1}$	[By IH]
$\leq (b_1 + \dots + b_k) + b_{k+1}$	[By Assumption]
$\leq b_1 + \dots + b_{k+1}$	[Algebra]

Thus we have shown that if the claim is true for k, it is true for k + 1.

Therefore, we have shown the claim for all $n \in \mathbb{N}$ by induction.

4. Casting Out Nines

(a) Suppose that $a \equiv b \pmod{m}$. Prove by induction that for every integer $n \ge 1$, $a^n \equiv b^n \pmod{m}$.

Solution:

Let $\mathsf{P}(n)$ be the statement " $a^n \equiv b^n \pmod{m}$ ". We prove that $\mathsf{P}(n)$ is true for all integers $n \ge 1$ by induction.

Base Case. (n = 1) We have $a^1 = a$ and $b^1 = b$, so we have $a^1 \equiv b^1 \pmod{m}$ by our assumption that $a \equiv b \pmod{m}$ and hence P(1) is true.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary integer $k \ge 1$.

Induction Step. We need to prove that $a^{k+1} \equiv b^{k+1} \pmod{m}$. By the inductive hypothesis we have $a^k \equiv b^k \pmod{m}$ and by the assumption we have $a \equiv b \pmod{m}$. Using the multiplicative property of mods we have $a^k \cdot a \equiv b^k \cdot b \pmod{m}$. But this is just $a^{k+1} \equiv b^{k+1} \pmod{m}$.

Thus, we can conclude that P(k+1) is true.

Therefore, by induction P(n) is true for all integers $n \ge 1$.

(b) Let $K \in \mathbb{N}$. Prove that if $K \equiv 0 \pmod{9}$, then the sum of the digits of K is a multiple of 9.

Solution:

Write $K = (d_m d_{m-1} \cdots d_1 d_0)_{10}$ where d_0, \ldots, d_m are the base-10 digits of K. Then $K = \sum_{i=0}^m d_i 10^i$ by definition. We show that $K \equiv \sum_{i=0}^m d_i \pmod{9}$: Now $10 \equiv 1 \pmod{9}$ and so by part (a) we know that $10^i \equiv 1^i \pmod{9}$ for $i \ge 1$ which is just $10^i \equiv 1 \pmod{9}$. We also have $10^0 = 1$. Therefore, for any $i = 0, \ldots, m$ by the multiplicative property modulo 9, we have $d_i 10^i \equiv d_i \pmod{9}$. We then apply the sum property modulo 9 to derive that $\sum_{i=0}^m d_i 10^i \equiv \sum_{i=0}^m d_i \pmod{9}$. The left-hand quantity is just K by definition so we have $K \equiv \sum_{i=0}^m d_i \pmod{9}$.

In particular, since $K \equiv 0 \pmod{9}$ by assumption, we have $\sum_{i=0}^{m} d_i \equiv 0 \pmod{9}$ and hence 9 divides the sum of the digits of K which is what we wanted to prove.