Section 3: Inference

1. Using the Direct Proof Rule

Show that $\neg p \rightarrow s$ follows from $p \lor q, q \rightarrow r$ and $r \rightarrow s$.

Solution:

1. 2. 3.	$p \lor q$ $q \to r$ $r \to s$			[Given] [Given] [Given]
	 4.1. 4.2. 4.3. 4.4. 	$\neg p$ q r s	[Assumption] [Elim of \lor : 1, 4.1] [MP of 4.2, 2] [MP 4.3, 3]	
4.	$\neg p \rightarrow s$	3		[Direct Proof Rule]

2. A Formal Proof in Propositional Logic

Show that $\neg p$ follows from $\neg(\neg r \lor t)$, $\neg q \lor \neg s$ and $(p \to q) \land (r \to s)$.

Solution:

1.	$\neg(\neg r \lor t)$	[Given]
2.	$\neg q \vee \neg s$	[Given]
3.	$(p \to q) \land (r \to s)$	[Given]
4.	$\neg \neg r \land \neg t$	[DeMorgan's Law: 1]
5.	$\neg \neg r$	[Elim of \wedge : 4]
6.	r	[Double Negation: 5]
7.	$r \rightarrow s$	[Elim of \wedge : 3]
8.	s	[MP, 6, 7]
9.	$\neg \neg s$	[Double Negation: 8]
10.	$\neg s \vee \neg q$	[Commutative: 2]
11.	$\neg q$	[Elim of \lor : 10, 9]
12.	$p \rightarrow q$	[Elim of \wedge : 3]
13.	$\neg q \rightarrow \neg p$	[Contrapositive: 12]
14.	$\neg p$	[MP: 11,13]

3. A Formal Proof in Predicate Logic

Prove $\exists x \ (P(x) \lor R(x))$ from $\forall x \ (P(x) \lor Q(x))$ and $\forall y \ (\neg Q(y) \lor R(y))$.

Solution:

1.	$\forall x \ (P(x) \lor Q(x))$	[Given]
2.	$\forall y \; (\neg Q(y) \lor R(y))$	[Given]
3.	$P(a) \lor Q(a)$	$[\text{Elim} \forall: 1]$
4.	$\neg Q(a) \lor R(a)$	$[\text{Elim} \forall: 2]$
5.	$Q(a) \to R(a)$	[Law of Implication: 4]
6.	$\neg \neg P(a) \lor Q(a)$	[Double Negation: 3]
7.	$\neg P(a) \rightarrow Q(a)$	[Law of Implication: 5]
	8.1. $\neg P(a)$ [Assumption]	
	8.2. $Q(a)$ [Modus Ponens: 8.1, 7]	
	8.3. $R(a)$ [Modus Ponens: 8.2, 5]	
8.	$\neg P(a) \rightarrow R(a)$	[Direct Proof]
9.	$\neg \neg P(a) \lor R(a)$	[Law of Implication: 8]
10.	$P(a) \lor R(a)$	[Double Negation: 9]
11.	$\exists x \ (P(x) \lor R(x))$	[Intro $\exists: 10$]

4. Formal Spoofs

For each of of the following proofs, determine why the proof is incorrect. Then, show that the claim is true by fixing the error.

(a) Show that $p \to (q \lor r)$ follows from $p \to q$ and r.

1.	$p \rightarrow q$	[Given]
2.	r	[Given]
3.	$p \to (q \lor r)$	$[\lor$ Intro: 1, 2]

(b) Show that q follows from $\neg p \lor q$ and p.

1.	$\neg p \lor q$	[Given]
2.	p	[Given]
3.	q	$[\lor$ Elim: 1, 2]

(c) Show that q follows from $q \vee p$ and $\neg p$.

1.	$\neg p$	[Given]
2.	$q \vee p$	[Given]
3.	$q \vee F$	[Substitute $p = F$ since $\neg p$ holds: 1, 2]
4.	q	[Identity: 3]

Solution:

The mistakes are as follows:

- (a) Line 3: inference rule used on a subexpression.
- (b) Line 3: \lor Elim requires $\neg \neg p$ not p.

(c) Line 3: there is no such "substitute for" rule

Next, we consider how to fix the proofs:

- (a) Since r is true, $q \lor r$ is true. Hence, the latter is true if we assume p. (It's true even if we don't assume p.) This can be formalized using the direct proof rule.
- (b) Add a line inferring $\neg \neg p$ from p.
- (c) Line 4 follows instead by \vee Elim.