
CSE 311: Foundations of Computing I Spring 2020

Section 2: Equivalences and Boolean Algebra

1. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.
(a) ¬p→ (q → r) q → (p ∨ r)

Solution:

¬p→ (q → r) ≡ ¬¬p ∨ (q → r) [Law of Implication]
≡ p ∨ (q → r) [Double Negation]
≡ p ∨ (¬q ∨ r) [Law of Implication]
≡ (p ∨ ¬q) ∨ r [Associativity]
≡ (¬q ∨ p) ∨ r [Commutativity]
≡ ¬q ∨ (p ∨ r) [Associativity]
≡ q → (p ∨ r) [Law of Implication]

(b) p↔ q (p ∧ q) ∨ (¬p ∧ ¬q)

Solution:

p↔ q ≡ (p→ q) ∧ (q → p) [iff is two implications]
≡ (¬p ∨ q) ∧ (q → p) [Law of Implication]
≡ (¬p ∨ q) ∧ (¬q ∨ p) [Law of Implication]
≡ ((¬p ∨ q) ∧ ¬q) ∨ ((¬p ∨ q) ∧ p) [Distributivity]
≡ (¬q ∧ (¬p ∨ q)) ∨ ((¬p ∨ q) ∧ p) [Commutativity]
≡ ((¬q ∧ ¬p) ∨ (¬q ∧ q)) ∨ ((¬p ∨ q) ∧ p) [Distributivity]
≡ ((¬p ∧ ¬q) ∨ (¬q ∧ q)) ∨ ((¬p ∨ q) ∧ p) [Commutativity]
≡ ((¬p ∧ ¬q) ∨ (q ∧ ¬q)) ∨ ((¬p ∨ q) ∧ p) [Commutativity]
≡ ((¬p ∧ ¬q) ∨ (q ∧ ¬q)) ∨ (p ∧ (¬p ∨ q)) [Commutativity]
≡ ((¬p ∧ ¬q) ∨ (q ∧ ¬q)) ∨ ((p ∧ ¬p) ∨ (p ∧ q)) [Distributivity]
≡ ((¬p ∧ ¬q) ∨ F ) ∨ ((p ∧ ¬p) ∨ (p ∧ q)) [Negation]
≡ ((¬p ∧ ¬q) ∨ F ) ∨ (F ∨ (p ∧ q)) [Negation]
≡ (¬p ∧ ¬q) ∨ (F ∨ (p ∧ q)) [Identity]
≡ (¬p ∧ ¬q) ∨ ((p ∧ q) ∨ F ) [Commutativity]
≡ (¬p ∧ ¬q) ∨ (p ∧ q) [Identity]
≡ (p ∧ q) ∨ (¬p ∧ ¬q) [Commutativity]

2. Boolean Algebra

Page 1 of 5



CSE 311: Section 2: Equivalences and Boolean Algebra Spring 2020

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify
it using axioms and theorems of boolean algebra.
(a) ¬p ∨ (¬q ∨ (p ∧ q))

Solution:
A: First, we replace ¬,∨, and ∧. This gives us p′ +q′ +pq. (Note that the parentheses are not necessary
in boolean algebra since the operations are associative.) Next, we can use DeMorgan’s laws to get the
slightly simpler (pq)′ + pq. Then, we can use commutativity to get pq + (pq)′ and complementarity to
get 1. (Note that this is another way of saying the formula is a tautology.)
B: Replacing ¬, ∨, and ∧ gives us p′ + q′ + pq. (Note that parentheses are not necessary in boolean
algebra since the operations are associative.) Then, we can simplify as follows:

p′ + q′ + pq = (pq)′ + pq De Morgan
= pq + (pq)′ Commutativity
= 1 Complementarity

Since 1 in boolean algebra means T, this shows that the original expression is a tautology.

(b) ¬(p ∨ (q ∧ p))

Solution:
A:

(p + qp)′ = p′(qp)′ De Morgan
= p′(q′ + p′) De Morgan (on second term)
= p′(p′ + q′) Commutativity
= p′ Absorption

B: Translating to Boolean algebra, we get (p + qp)′. Then, we can simplify as follows:

(p + qp)′ = p′(qp)′ De Morgan
= p′(q′ + p′) De Morgan
= p′(p′ + q′) Commutativity
= p′ Absorption

3. Translating Between Predicate Logic and English

Let the domain of discourse be integers. Let’s define the predicates Even(x) and Odd(x) to mean that x is an
even or odd number, respectively. Define the predicates Positive(x), Negative(x), and Prime(x) to mean that
x is positive, negative, or prime, respectively.
Translate the logical statements into English, and translate the English statements into predicate logic. You
should not simplify. However, you should use the techniques shown in lecture for producing more natural
translations when restricting domains and for avoiding the introduction of variable names when not necessary.
You can also assume an “<” operator that is true when x < y.
(a) ∀x.(Even(x)⊕ Odd(x))

Solution:
Every integer is either odd or even.

(b) ∃x.¬(Negative(x) ∨ Positive(x))

Page 2 of 5



CSE 311: Section 2: Equivalences and Boolean Algebra Spring 2020

Solution:
There exists an integer which is not positive or negative.

(c) There exists an even prime integer.
Solution:
∃x.(Even(x) ∧ Prime(x))

(d) There are infinitely many prime integers.
Solution:
∀x.∃y.(Prime(x)→ (Prime(y) ∧ (x < y)))

4. Properties of XOR

Like ∧ and ∨, the ⊕ operator (exclusive or) has many interesting properties. For example, it is easy to verify
with a truth table that ⊕ is also associative. In this problem, we will prove some additional properties of ⊕.
Use equivalence chains to prove each of the facts stated below. For this problem only, you may also use the
equivalence

p⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q)
which you may cite as “Definition of ⊕”. This equivalence allows you to translate ⊕ into an expression
involving only ∧, ∨, and ¬, so that the standard equivalences can then be applied.
(a) p⊕ q ≡ q ⊕ p (Commutativity)

Solution:

p⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q) Definition of ⊕
≡ (¬p ∧ q) ∨ (p ∧ ¬q) Commutativity
≡ (q ∧ ¬p) ∨ (¬q ∧ p) Commutativity
≡ q ⊕ p Definition of ⊕

(b) p⊕ p ≡ F and p⊕ ¬p ≡ T
Solution:

p⊕ p ≡ (p ∧ ¬p) ∨ (¬p ∧ p) Definition of ⊕
≡ (p ∧ ¬p) ∨ (p ∧ ¬p) Commutativity
≡ (p ∧ ¬p) Idempotency
≡ F Negation

p⊕ ¬p ≡ (p ∧ ¬¬p) ∨ (¬p ∧ ¬p) Definition of ⊕
≡ (p ∧ p) ∨ (¬p ∧ ¬p) Double Negation
≡ p ∨ ¬p Idempotency
≡ T Negation

Page 3 of 5



CSE 311: Section 2: Equivalences and Boolean Algebra Spring 2020

(c) p⊕ F ≡ p and p⊕ T ≡ ¬p

Solution:

p⊕ F ≡ (p ∧ ¬F) ∨ (¬p ∧ F) Definition of ⊕
≡ (p ∧ (¬F ∨ F)) ∨ (¬p ∧ F) Identity
≡ (p ∧ (F ∨ ¬F)) ∨ (¬p ∧ F) Commutativity
≡ (p ∧ T) ∨ (¬p ∧ F) Negation
≡ p ∨ (¬p ∧ F) Identity
≡ p ∨ F Domination
≡ p Identity

p⊕ T ≡ (p ∧ ¬T) ∨ (¬p ∧ T) Definition of ⊕
≡ (p ∧ ¬T) ∨ ¬p Identity
≡ (¬¬p ∧ ¬T) ∨ ¬p Double Negation
≡ ¬(¬p ∨ T) ∨ ¬p De Morgan
≡ ¬T ∨ ¬p Domination
≡ ¬(T ∧ p) De Morgan
≡ ¬(p ∧ T) Commutativity
≡ ¬p Identity

(d) (¬p)⊕ q ≡ ¬(p⊕ q) ≡ p⊕ (¬q). I.e., negating one of the inputs negates the overall expression.

Solution:

¬(p⊕ q) ≡ ¬((p ∧ ¬q) ∨ (¬p ∧ q)) Definition of ⊕
≡ ¬(p ∧ ¬q) ∧ ¬(¬p ∧ q) De Morgan
≡ (¬p ∨ ¬¬q) ∧ (¬¬p ∨ ¬q) De Morgan
≡ (¬p ∨ q) ∧ (p ∨ ¬q) Double Negation
≡ ((¬p ∨ q) ∧ p) ∨ ((¬p ∨ q) ∧ ¬q) Distributivity
≡ (p ∧ (¬p ∨ q)) ∨ (¬q ∧ (¬p ∨ q)) Commutativity
≡ ((p ∧ ¬p) ∨ (p ∧ q)) ∨ ((¬q ∧ ¬p) ∨ (¬q ∧ q)) Distributivity
≡ ((p ∧ ¬p) ∨ (p ∧ q)) ∨ ((¬q ∧ ¬p) ∨ (q ∧ ¬q)) Commutativity
≡ (F ∨ (p ∧ q)) ∨ ((¬q ∧ ¬p) ∨ F) Negation
≡ ((p ∧ q) ∨ F) ∨ ((¬q ∧ ¬p) ∨ F) Commutativity
≡ (p ∧ q) ∨ (¬q ∧ ¬p) Identity
≡ (¬¬p ∧ q) ∨ (¬q ∧ ¬p) Double Negation
≡ (¬¬p ∧ q) ∨ (¬p ∧ ¬q) Commutativity
≡ (¬p ∧ ¬q) ∨ (¬¬p ∧ q) Commutativity
≡ ¬p⊕ q Definition of ⊕

The second equivalence ¬(p⊕ q) ≡ p⊕ (¬q) follows from the first and Commutativity (part a).

Page 4 of 5



CSE 311: Section 2: Equivalences and Boolean Algebra Spring 2020

5. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.
(a) p→ q q → p

Solution:
A: They differ when p = T and q = F.
B: They differ when p = T and q = F since p→ q = T→ F ≡ F but q → p ≡ F→ T ≡ T.

(b) p→ (q ∧ r) (p→ q) ∧ r

Solution:
A: They differ when p = r = F since p→ (q ∧ r) = F→ (q ∧ F) ≡ T but (p→ q)∧ r = (F→ q)∧ F ≡ F.
B: They differ when p = r = F since p→ (q ∧ r) = F→ (q ∧ F) ≡ F→ F ≡ T and on the other hand
(p→ q) ∧ r = (F→ q) ∧ F ≡ T ∧ F ≡ F.

Page 5 of 5


