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Countable and uncountable setsCountable and uncountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of N.
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Countable and uncountable setsCountable and uncountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of N.

Countable sets
N (natural numbers)
Z (integers)
Q +  (positive rational numbers)
Σ ∗  over finite Σ
All (Java) programs

Shown by dovetailing.
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Countable and uncountable setsCountable and uncountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of N.

Countable sets
N (natural numbers)
Z (integers)
Q +  (positive rational numbers)
Σ ∗  over finite Σ
All (Java) programs

Uncountable sets
All real numbers in [0, 1)

Shown by dovetailing.

Shown by diagonalization.
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Recall the proof that Recall the proof that [[00,, 11)) is uncountable: diagonalization is uncountable: diagonalization

Suppose for contradiction that there is a list {r0, r1, r2, …}
of all real numbers in [0, 1).

Consider the digits x0, x1, x2, x3, … on the diagonal of this
list, i.e., the n-th digit of rn for n ∈ N.

For each such digit xi, construct the digit x̂ i as follows:

If xi = 1 then x̂ i = 0.
If xi ≠ 1 then x̂ i = 1.

Now, consider the number r̂ = 0.x̂0x̂1x̂2x̂3…

Note that rn ≠ r̂ for any n ∈ N because they differ on the n-
th digit.

So the list doesn’t include r̂, which is a contradiction. Thus
the set [0, 1) is uncountable.

r0 0.500000000000…

r1 0.333333333333…

r2 0.142857142857…

r3 0.141592653589…

r4 0.200000000000…

⋮  
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The set of all functions The set of all functions ff :: NN →→ {{00,, 11}} is uncountable is uncountable
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The set of all functions The set of all functions ff :: NN →→ {{00,, 11}} is uncountable is uncountable

Suppose for contradiction that there is a list {f1, f2, f3, …}
of functions from N to {0, 1}.

f0 0 0 0 0 0 0 0 0 0…

f1 1 1 1 1 1 1 1 1 1…

f2 0 1 0 1 0 1 0 1 0…

f3 0 1 1 1 0 1 1 1 0…

f4 1 1 0 0 0 1 1 0 0…

⋮  
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Note that fn ≠ f̂ for any n ∈ N because the functions differ
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Uncomputable functionsUncomputable functions

We have seen that …
The set of all (Java) programs is countable.
The set of all functions f : N → {0, 1} is uncountable.

7



Uncomputable functionsUncomputable functions

We have seen that …
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Uncomputable functionsUncomputable functions

We have seen that …
The set of all (Java) programs is countable.
The set of all functions f : N → {0, 1} is uncountable.
So there must be some function that is not computable by any program!

halt(p, x)

Finite
{010,11, 21}

Regular
0*1* DFA

 NFA
 Regex

Context-Free
CFG

All

S → 0S1 | ε

Java

C
C++

General Programming

...

{0n1n2n : n ≥ 0}

We’ll study one such
important function
today.
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Undecidability of the halting problemUndecidability of the halting problem
Important problems computers can’t solve.
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First, some notation …First, some notation …

We’ll be talking about (Java) code.
code(P) will denote “the code of the program P”.
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First, some notation …First, some notation …

We’ll be talking about (Java) code.
code(P) will denote “the code of the program P”.

Consider this program:

What is P(code(P))?
true

public static boolean P(String x) { 
  return x.matches("public .*");
}
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And now, the halting problem!And now, the halting problem!

The Halting Problem
Given code(P) for any program P and an input x,
output true if P halts on the input x, and
output false if P does not halt (diverges) on the input x.
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And now, the halting problem!And now, the halting problem!

The Halting Problem
Given code(P) for any program P and an input x,
output true if P halts on the input x, and
output false if P does not halt (diverges) on the input x.

Can’t we determine this by just running P on x?
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And now, the halting problem!And now, the halting problem!

The Halting Problem
Given code(P) for any program P and an input x,
output true if P halts on the input x, and
output false if P does not halt (diverges) on the input x.

Can’t we determine this by just running P on x?
No! We can’t tell if P diverged on x or is taking a long time to return.
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The halting problem is undecidableThe halting problem is undecidable

The Halting Problem
Given code(P) for any program P and an input x,
output true if P halts on the input x, and
output false if P does not halt (diverges) on the input x.

Theorem (due to Alan Turing)
There is no program that solves the halting problem.
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The halting problem is undecidableThe halting problem is undecidable

The Halting Problem
Given code(P) for any program P and an input x,
output true if P halts on the input x, and
output false if P does not halt (diverges) on the input x.

Theorem (due to Alan Turing)
There is no program that solves the halting problem.

In other words, there is no program H(code(P),x) that computes the function
described by the halting problem. This function is therefore uncomputable.
Because the function outputs a boolean (a yes/no decision), we say that the
underlying problem is undecidable.
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Proof by contradictionProof by contradiction

Suppose that H is a program that solves the halting problem.
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Then, we can write the program D as follows:

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}

12



Proof by contradictionProof by contradiction

Suppose that H is a program that solves the halting problem.
Then, we can write the program D as follows:

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}

Does D(code(D)) halt?

12



Proof by contradictionProof by contradiction

Suppose that H is a program that solves the halting problem.
Then, we can write the program D as follows:

H solves the halting problem means the following:
If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}

Does D(code(D)) halt?

12



Proof by contradictionProof by contradiction

Suppose that H is a program that solves the halting problem.
Then, we can write the program D as follows:

H solves the halting problem means the following:
If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.

Suppose that D(code(D)) halts.
Then, by definition of H, it must be that H(code(D),code(D)) is true.
But in that case, D(code(D)) doesn’t halt by definition of D.

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}

Does D(code(D)) halt?

12



Proof by contradictionProof by contradiction

Suppose that H is a program that solves the halting problem.
Then, we can write the program D as follows:

H solves the halting problem means the following:
If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.

Suppose that D(code(D)) halts.
Then, by definition of H, it must be that H(code(D),code(D)) is true.
But in that case, D(code(D)) doesn’t halt by definition of D.

Suppose that D(code(D)) doesn’t halt.
Then, by definition of H, it must be that H(code(D),code(D)) is false.
But in that case, D(code(D)) halts by definition of D.

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}

Does D(code(D)) halt?

12



Proof by contradictionProof by contradiction

Suppose that H is a program that solves the halting problem.
Then, we can write the program D as follows:
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If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.

Suppose that D(code(D)) halts.
Then, by definition of H, it must be that H(code(D),code(D)) is true.
But in that case, D(code(D)) doesn’t halt by definition of D.

Suppose that D(code(D)) doesn’t halt.
Then, by definition of H, it must be that H(code(D),code(D)) is false.
But in that case, D(code(D)) halts by definition of D.

So we reach a contradiction in either case.
Therefore, our assumption that H exists must be false. ◻

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}

Does D(code(D)) halt?
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Where did the idea for creating Where did the idea for creating DD come from? come from?

Note that D halts on code(P)
iff H(code(P),code(P)) outputs false, i.e.,
iff P doesn’t halt on the input code(P).

Therefore, D differs from every program P on the input code(P).

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}
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Where did the idea for creating Where did the idea for creating DD come from? come from?

Note that D halts on code(P)
iff H(code(P),code(P)) outputs false, i.e.,
iff P doesn’t halt on the input code(P).

Therefore, D differs from every program P on the input code(P).
This sounds like diagonalization!

public static void D(String x) { 
  if (H(x, x) == true) { 
    while (true); // diverge 
  } else { 
    return;       // halt 
  }
}
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“D” is for diagonalization“D” is for diagonalization

List all Java programs.
This list exists because the set of all Java
programs is countable.  
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P1
P2
P3
P4
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“D” is for diagonalization“D” is for diagonalization

List all Java programs.
This list exists because the set of all Java
programs is countable.

Let ⟨P⟩ stand for code(P).
(P, x) entry is 1 if the program P halts on
input x and 0 otherwise.

D behaves like the flipped diagonal
D(⟨P⟩) = ¬P(⟨P⟩), and differs from every P
in the list.

But the list is complete.
So if D isn’t included, it cannot exist!
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The halting problem isn’t the only hard problemThe halting problem isn’t the only hard problem

To show that a problem B is undecidable:
Prove that if there were a program deciding B then there would be a way to
build a program deciding the halting problem.
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The halting problem isn’t the only hard problemThe halting problem isn’t the only hard problem

To show that a problem B is undecidable:
Prove that if there were a program deciding B then there would be a way to
build a program deciding the halting problem.
That is, prove “B is decidable →  halting problem is decidable”.
By contrapositive, “halting problem is undecidable →  B is undecidable”.
Therefore, B is undecidable.

Every non-trivial question about program behavior is undecidable.
Termination, equivalence checking, verification, synthesis, …

But we can o�en decide these questions in practice!
They are undecidable for arbitrary programs and properties.
Yet decidable for many specific classes of programs and properties.
And when we allow “yes/no/don’t know” answers.
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That’s all folks!That’s all folks!
Propositional logic.
Boolean logic, circuits, and algebra.
Predicates, quantifiers and predicate logic.
Inference rules and formal proofs for propositional and predicate logic.
English proofs.
Set theory.
Modular arithmetic and prime numbers.
GCD, Euclid’s algorithm, modular inverse, and exponentiation.
Induction and strong induction.
Recursively defined functions and sets.
Structural induction.
Regular expressions.
Context-free grammars and languages.
Relations, composition, and reflexive-transitive closure.
DFAs, NFAs, and product construction for DFAs.
Finite state machines with output.
Minimization algorithm for finite state machines.
Conversion of regular expressions to NFAs.
Subset construction to convert NFAs to DFAs.
Equivalence of DFAs, NFAs, regular expressions.
Method to prove languages are not regular.
Cardinality, countability, and diagonalization.
Undecidability and the halting problem.

Go forth and
prove great
things!
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