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① Suppose for contradiction that some DFA M recognizes 
L.

② Consider the set S =  {…}.

③ Since S is infinite and M has finitely many states, there
must be two strings sa, sb ∈ S such that sa ≠ sb and both
end in the same state of M.

④ Consider appending t to both sa and sb.

⑤ Since sa and sb end in the same state of M, then sat and 
sbt also end in the same state q of M. Since sat ∈ L and 
sbt ∉ L, M does not recognize L.

⑥ Since M was arbitrary, no DFA recognizes L.
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Suppose for contradiction that some DFA M recognizes L.

Consider the set S =  {0n : n ≥ 0}.

Since S is infinite and M has finitely many states, there must be two strings 
0a, 0b ∈ S with a ≠ b that both end in the same state of M.

Consider appending 1a to both 0a and 0b.

Since 0a and 0b end in the same state of M, then 0a1a and 0b1a also end in
the same state q of M. Since 0a1a ∈ L and 0b1a ∉ L, M does not recognize L.

Since M was arbitrary, no DFA recognizes L.
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Languages and representationsLanguages and representations
How powerful are general-purpose programming languages?
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Finite
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S → 0S1 | ε
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A hierarchy of languages and representationsA hierarchy of languages and representations

We can think of languages as functions
from strings to booleans.

Such a function returns true iff a
string is in the language.

DFAs and CFGs can represent some
functions but not others.

E.g., no DFA for {0n1n : n ≥ 0}.
General-purpose programs can
represent even more functions.

E.g., no CFG for {0n1n2n : n ≥ 0}.
Are there some functions no program
can represent?

That’s what we’ll study in these last
two lectures :)

Finite
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0*1* DFA

 NFA
 Regex

Context-Free
CFG

All

S → 0S1 | ε
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C
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...
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Cardinality and countabilityCardinality and countability
What does it mean for two sets to have the same size?
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Understanding cardinalityUnderstanding cardinality

What does it mean for two sets
to have the same size?

We can establish a one-to-
one correspondence between
their elements.
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input for every output: for each y ∈ B, there is an 
x ∈ A such that f(x) = y.
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One-to-one correspondences (bijections)
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Defining cardinalityDefining cardinality

Cardinality of two sets
Sets A  and B  have the same cardinality if there is a one-to-one
correspondence between them, i.e., there is a bijection f :A → B.
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Defining cardinalityDefining cardinality

Cardinality of two sets
Sets A  and B  have the same cardinality if there is a one-to-one
correspondence between them, i.e., there is a bijection f :A → B.

Example: do N and even natural numbers have the same cardinality?
Yes! The 1-1 correspondence is f(n) = 2n.

0 1 2 3 4 5 6 7 8 9 10 …

0 2 4 6 8 10 12 14 16 18 20 …

This definition also works for infinite sets!
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Countable setsCountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of N.
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Countable setsCountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of N.

Equivalently, we can say that …
A set  S is countable iff there is an onto function  g : N → S.

And we can also say that …
A set  S is countable iff we can order its elements: S = {x0, x1, x2, …}.

Example: is the set Z of all integers countable?

N 0 1 2 3 4 5 6 7 8 9 10 …

Z 0 1 -1 2 -2 3 -3 4 -4 5 -5 …
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Is the set Is the set QQ ++  of positive rationals countable? of positive rationals countable?
There are infinitely many rationals between any two rational numbers.
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1 / 1 1 / 2 1 / 3 1 / 4 1 / 5 1 / 6 1 / 7 1 / 8 …

2 / 1 2 / 2 2 / 3 2 / 4 2 / 5 2 / 6 2 / 7 2 / 8 …

3 / 1 3 / 2 3 / 3 3 / 4 3 / 5 3 / 6 3 / 7 3 / 8 …

4 / 1 4 / 2 4 / 3 4 / 4 4 / 5 4 / 6 4 / 7 4 / 8 …

5 / 1 5 / 2 5 / 3 5 / 4 5 / 5 5 / 6 5 / 7 5 / 8 …
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Counting Counting QQ ++   with dovetailingwith dovetailing
The set of all positive rational numbers is countable.

Q + = {1/1, 2 /1, 1 /2, 3 /1, 2 /2, 1 /3, 4 /1, 2 /3, 3 /2, …}

List elements in the order of the sum of the numerator and denominator,
breaking ties according to the denominator.

Only k pairs of positive numbers add up to k + 1, so every positive rational
number comes up some point.

This technique is called dovetailing.
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ΣΣ ∗∗  is countable for every finite  is countable for every finite ΣΣ

How would we show this?
Alphabetical / lexicographic order doesn’t work (infinitely many A’s):
A, AA, AAA, AAAA, AAAAA, …
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ΣΣ ∗∗  is countable for every finite  is countable for every finite ΣΣ

How would we show this?
Alphabetical / lexicographic order doesn’t work (infinitely many A’s):
A, AA, AAA, AAAA, AAAAA, …

Use dovetailing again!
List strings in the order of length, breaking ties lexicographically.
There are only |Σ|k strings on length k.

For example, {0, 1} ∗  is countable:
{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, …}
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The set of all Java programs is countableThe set of all Java programs is countable
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The set of all Java programs is countableThe set of all Java programs is countable

Java programs are just strings in Σ ∗  where Σ is the alphabet of ASCII
characters. Since Σ ∗  is countable, so is the set of all Java programs.

This is true for other programming languages too: C, C++, Python, JavaScript,
etc.

So, is everything countable?
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Real numbers are not countableReal numbers are not countable

Theorem [due to Cantor]
The set of real numbers between 0 and 1, [0, 1), is not countable.
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Real numbers are not countableReal numbers are not countable

Theorem [due to Cantor]
The set of real numbers between 0 and 1, [0, 1), is not countable.

Proof will be by contradiction. Using a method called diagonalization.
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Proof that Proof that [[00,, 11)) is uncountable: preliminaries is uncountable: preliminaries
First, note that every number in [0, 1) has an infinite decimal expansion:

1/2 = 0.50000000000000000000000…
1/3 = 0.33333333333333333333333…
1/7 = 0.14285714285714285714285…

π − 3 = 0.14159265358979323846264…
1/5 = 0.19999999999999999999999…

= 0.20000000000000000000000…

This representation is unique except for the cases where the decimal
expansion ends in all 0’s or all 9’s. We will use the all 0’s representation.

19



Proof that Proof that [[00,, 11)) is uncountable: diagonalization is uncountable: diagonalization

Suppose for contradiction that there is a list {r0, r1, r2, …}
of all real numbers in [0, 1).

r0 0.500000000000…

r1 0.333333333333…

r2 0.142857142857…

r3 0.141592653589…

r4 0.200000000000…

⋮  
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For each such digit xi, construct the digit x̂ i as follows:

If xi = 1 then x̂ i = 0.
If xi ≠ 1 then x̂ i = 1.

Now, consider the number r̂ = 0.x̂0x̂1x̂2x̂3…

Note that rn ≠ r̂ for any n ∈ N because they differ on the n-
th digit.

So the list doesn’t include r̂, which is a contradiction. Thus
the set [0, 1) is uncountable.

r0 0.500000000000…

r1 0.333333333333…

r2 0.142857142857…
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For each such output xi, construct x̂ i as follows:

If xi = 1 then x̂ i = 0.
If xi ≠ 1 then x̂ i = 1.

Now, consider the function f̂(n) = x̂n.
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f2 0 1 0 1 0 1 0 1 0…

f3 0 1 1 1 0 1 1 1 0…

f4 1 1 0 0 0 1 1 0 0…

⋮  
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The set of all functions The set of all functions ff :: NN →→ {{00,, 11}} is uncountable is uncountable

Suppose for contradiction that there is a list {f1, f2, f3, …}
of functions from N to {0, 1}.

Consider the outputs x0, x1, x2, x3, … on the diagonal of
this list, i.e., fn(n) for n ∈ N.

For each such output xi, construct x̂ i as follows:

If xi = 1 then x̂ i = 0.
If xi ≠ 1 then x̂ i = 1.

Now, consider the function f̂(n) = x̂n.

Note that fn ≠ f̂ for any n ∈ N because the functions differ
on the n-th output.

f0 0 0 0 0 0 0 0 0 0…

f1 1 1 1 1 1 1 1 1 1…

f2 0 1 0 1 0 1 0 1 0…

f3 0 1 1 1 0 1 1 1 0…

f4 1 1 0 0 0 1 1 0 0…

⋮  
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The set of all functions The set of all functions ff :: NN →→ {{00,, 11}} is uncountable is uncountable

Suppose for contradiction that there is a list {f1, f2, f3, …}
of functions from N to {0, 1}.

Consider the outputs x0, x1, x2, x3, … on the diagonal of
this list, i.e., fn(n) for n ∈ N.

For each such output xi, construct x̂ i as follows:

If xi = 1 then x̂ i = 0.
If xi ≠ 1 then x̂ i = 1.

Now, consider the function f̂(n) = x̂n.

Note that fn ≠ f̂ for any n ∈ N because the functions differ
on the n-th output.

So the list doesn’t include f̂, which is a contradiction. Thus
the set {f | f : N → {0, 1}} is uncountable.

f0 0 0 0 0 0 0 0 0 0…

f1 1 1 1 1 1 1 1 1 1…

f2 0 1 0 1 0 1 0 1 0…

f3 0 1 1 1 0 1 1 1 0…

f4 1 1 0 0 0 1 1 0 0…

⋮  
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UncomputabilityUncomputability
Are there problems computers can’t solve?
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Uncomputable functionsUncomputable functions

We have seen that …
The set of all (Java) programs is countable.
The set of all functions f : N → {0, 1} is uncountable.
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Uncomputable functionsUncomputable functions

We have seen that …
The set of all (Java) programs is countable.
The set of all functions f : N → {0, 1} is uncountable.

So there must be some function  f : N → {0, 1} that is not computable by any
program! We’ll study one such function next time.
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SummarySummary
Cardinality and countability.

Two sets have the same cardinality if there is a bijection between them.
A set is countable iff it has the same cardinality as some subset of N.
Use dovetailing to show that a set is countable and diagonalization to show
that it’s uncountable.

Computability.
Countability of programs and uncountability of functions  f : N → {0, 1} tells
us that there is some function that can’t be computed by any program!
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