
CSE 311 Lecture 20: RegularCSE 311 Lecture 20: Regular
ExpressionsExpressions

 and Emina Torlak Sami Davies

1

https://homes.cs.washington.edu/~emina/
http://samidavies.com/

TopicsTopics
Structural induction

A brief review of .
Regular expressions

Definition, examples, applications.
Context-free grammars

Syntax, semantics, and examples.

Lecture 19

2

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture19.html

Structural inductionStructural induction
A brief review of .Lecture 19

3

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture19.html

Structural induction proof templateStructural induction proof template

① Let be [definition of].
We will show that is true for every by structural
induction.

② Base cases:
[Proof of .]

③ Inductive hypothesis:
Assume that are true for some arbitrary

.
④ Inductive step:

We want to prove that is true.
[Proof of . The proof must invoke the structural
inductive hypothesis.]

⑤ The result follows for all by structural induction.

P(x) P(x)

P(x) x ∈ S

P(), … , P()s0 sm

P(), … , P()y0 yk

, … , ∈ Sy0 yk

P(y)

P(y)

x ∈ S

Recursive definition of
Basis step:

.
Recursive step:
if , then

.

S

∈ S, … , ∈ Ss0 sm

, … , ∈ Sy0 yk

y ∈ S

If the recursive step of
includes multiple rules for
constructing new elements
from existing elements, then
③ assume for the existing
elements in every rule, and
④ prove for the new
element in every rule.

S

P

P

4

Structural induction works just like ordinary inductionStructural induction works just like ordinary induction

① Let be [definition of].
We will show that is true for every by structural
induction.

② Base cases:
[Proof of .]

③ Inductive hypothesis:
Assume that is true for some arbitrary .

④ Inductive step:
We want to prove that is true.
[Proof of . The proof must invoke the structural
inductive hypothesis.]

⑤ The result follows for all by structural induction.

P(x) P(x)

P(x) x ∈ ℕ

P(0)

P(n) n ∈ ℕ

P(n + 1)

P(n + 1)

x ∈ ℕ

Recursive definition of
Basis step: .
Recursive step:
if , then

.

ℕ

0 ∈ ℕ

n ∈ ℕ

n + 1 ∈ ℕ

Ordinary induction is just
structural induction applied
to the recursively defined set
of natural numbers!

5

Understanding structural inductionUnderstanding structural induction

How do we get from and
?

1. First, we have
2. Next, we have .
3. Intro on 2 gives us .
4. Elim on 1 gives us .
5. Modus Ponens on 3 and 4 gives us .
6. Intro on 2 and 5 gives us .
7. Elim on 1 gives us

.
8. Modus Ponens on 6 and 7 gives us .

P(∙); ∀L, R ∈ S. (P(L) ∧ P(R)) → P(𝖳𝗋𝖾𝖾(∙, L, R))

∴ ∀x ∈ S. P(x)

P(𝖳𝗋𝖾𝖾(∙, ∙, 𝖳𝗋𝖾𝖾(∙, ∙, ∙))) P(∙)

∀L, R ∈ S. (P(L) ∧ P(R)) → P(𝖳𝗋𝖾𝖾(∙, L, R))

Define by
Basis: .
Recursive:
if , then

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

∀L, R ∈ S. (P(L) ∧ P(R)) → P(𝖳𝗋𝖾𝖾(∙, L, R))

P(∙) P(∙)

∧ P(∙) ∧ P(∙) P(∙) ∧ P(∙)

∀ (P(∙) ∧ P(∙)) → P(𝖳𝗋𝖾𝖾(∙, ∙, ∙)) ⇓ (P(∙)∧P(∙))→P(𝖳𝗋𝖾𝖾(∙,∙,∙))

P(𝖳𝗋𝖾𝖾(∙, ∙, ∙)) P(𝖳𝗋𝖾𝖾(∙, ∙, ∙))

∧ P(∙) ∧ P(𝖳𝗋𝖾𝖾(∙, ∙, ∙)) P(∙) ∧ P(𝖳𝗋𝖾𝖾(∙, ∙, ∙))

∀

(P(∙) ∧ P(𝖳𝗋𝖾𝖾(∙, ∙, ∙)) → P(𝖳𝗋𝖾𝖾(∙, ∙, 𝖳𝗋𝖾𝖾(∙, ∙, ∙)))

 ⇓ (P(∙)∧P(𝖳𝗋𝖾𝖾(∙,∙,∙))→P(𝖳𝗋𝖾𝖾(∙,∙,𝖳𝗋𝖾𝖾(∙,∙,∙)))

P(𝖳𝗋𝖾𝖾(∙, ∙, 𝖳𝗋𝖾𝖾(∙, ∙, ∙))) P(𝖳𝗋𝖾𝖾(∙, ∙, 𝖳𝗋𝖾𝖾(∙, ∙, ∙)))

6

Example: prove Example: prove for all for all

① Let be .
We will show that is true for every by structural
induction.

② Base case ():
Let in be arbitrary. Then,
since . So is true.

③ Inductive hypothesis:
Assume that is true for some arbitrary .

④ Inductive step:
We want to prove that is true for every .
Let and be arbitrary. Then

So for all , and is true.
⑤ The result follows for all by structural induction.

𝗅𝗅𝖾𝖾𝗇𝗇((xx ∙∙ yy)) == 𝗅𝗅𝖾𝖾𝗇𝗇((xx)) ++ 𝗅𝗅𝖾𝖾𝗇𝗇((yy)) xx,, yy ∈∈ ΣΣ
∗∗

P(y) ∀x ∈ . 𝗅𝖾𝗇(x ∙ y) = 𝗅𝖾𝗇(x) + 𝗅𝖾𝗇(y)Σ
∗

P(y) y ∈ Σ
∗

y = ε

x Σ
∗

𝗅𝖾𝗇(x ∙ ε) = 𝗅𝖾𝗇(x) = 𝗅𝖾𝗇(x) + 𝗅𝖾𝗇(ε)

𝗅𝖾𝗇(ε) = 0 P(ε)

P(w) w ∈ Σ
∗

P(wa) a ∈ Σ

a ∈ Σ x ∈ Σ
∗

𝗅𝖾𝗇(x ∙ wa) = 𝗅𝖾𝗇((x ∙ w)a)

= 𝗅𝖾𝗇(x ∙ w) + 1

= 𝗅𝖾𝗇(x) + 𝗅𝖾𝗇(w) + 1

= 𝗅𝖾𝗇(x) + 𝗅𝖾𝗇(wa)

by defn of ∙

by defn of 𝗅𝖾𝗇

by IH

by defn of 𝗅𝖾𝗇

𝗅𝖾𝗇(x ∙ wa) = 𝗅𝖾𝗇(x) + 𝗅𝖾𝗇(wa) x ∈ Σ
∗ P(wa)

y ∈ Σ
∗

Define by
Basis: .
Recursive:
if and ,
then

Length

Concatenation

Σ
∗

ε ∈ Σ
∗

w ∈ Σ
∗ a ∈ Σ

wa ∈ Σ
∗

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1

x ∙ ε = x

x ∙ (wa) = (x ∙ w)a

7

Example: prove Example: prove for any rooted binary tree for any rooted binary tree

||tt|| ≤≤ −− 1122⌈⌈tt⌉⌉++11 tt

Define by
Basis: .
Recursive:
if , then

Size

Height

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| =

1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R))⌉ =

1 + max(⌈L⌉, ⌈R⌉)

8

Example: prove Example: prove for any rooted binary tree for any rooted binary tree

① Let be .
We will show that is true for every by structural induction.

||tt|| ≤≤ −− 1122⌈⌈tt⌉⌉++11 tt

P(t) |t| ≤ − 12⌈t⌉+1

P(t) t ∈ S

Define by
Basis: .
Recursive:
if , then

Size

Height

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| =

1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R))⌉ =

1 + max(⌈L⌉, ⌈R⌉)

8

Example: prove Example: prove for any rooted binary tree for any rooted binary tree

① Let be .
We will show that is true for every by structural induction.

② Base case ():
 so is true.

||tt|| ≤≤ −− 1122⌈⌈tt⌉⌉++11 tt

P(t) |t| ≤ − 12⌈t⌉+1

P(t) t ∈ S

t = ∙

| ∙ | = 1 = − 1 = − 1 = − 121 20+1 2⌈∙⌉+1 P(∙)
Define by

Basis: .
Recursive:
if , then

Size

Height

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| =

1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R))⌉ =

1 + max(⌈L⌉, ⌈R⌉)

8

Example: prove Example: prove for any rooted binary tree for any rooted binary tree

① Let be .
We will show that is true for every by structural induction.

② Base case ():
 so is true.

③ Inductive hypothesis:
Assume that and are true for some arbitrary .

||tt|| ≤≤ −− 1122⌈⌈tt⌉⌉++11 tt

P(t) |t| ≤ − 12⌈t⌉+1

P(t) t ∈ S

t = ∙

| ∙ | = 1 = − 1 = − 1 = − 121 20+1 2⌈∙⌉+1 P(∙)

P(L) P(R) L, R ∈ S

Define by
Basis: .
Recursive:
if , then

Size

Height

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| =

1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R))⌉ =

1 + max(⌈L⌉, ⌈R⌉)

8

Example: prove Example: prove for any rooted binary tree for any rooted binary tree

① Let be .
We will show that is true for every by structural induction.

② Base case ():
 so is true.

③ Inductive hypothesis:
Assume that and are true for some arbitrary .

④ Inductive step:
We want to prove that is true.

||tt|| ≤≤ −− 1122⌈⌈tt⌉⌉++11 tt

P(t) |t| ≤ − 12⌈t⌉+1

P(t) t ∈ S

t = ∙

| ∙ | = 1 = − 1 = − 1 = − 121 20+1 2⌈∙⌉+1 P(∙)

P(L) P(R) L, R ∈ S

P(𝖳𝗋𝖾𝖾(∙, L, R))

Define by
Basis: .
Recursive:
if , then

Size

Height

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| =

1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R))⌉ =

1 + max(⌈L⌉, ⌈R⌉)

8

Example: prove Example: prove for any rooted binary tree for any rooted binary tree

① Let be .
We will show that is true for every by structural induction.

② Base case ():
 so is true.

③ Inductive hypothesis:
Assume that and are true for some arbitrary .

④ Inductive step:
We want to prove that is true.

||tt|| ≤≤ −− 1122⌈⌈tt⌉⌉++11 tt

P(t) |t| ≤ − 12⌈t⌉+1

P(t) t ∈ S

t = ∙

| ∙ | = 1 = − 1 = − 1 = − 121 20+1 2⌈∙⌉+1 P(∙)

P(L) P(R) L, R ∈ S

P(𝖳𝗋𝖾𝖾(∙, L, R))

|𝖳𝗋𝖾𝖾(∙, L, R)| = 1 + |L| + |R|

≤ 1 + (− 1) + (− 1)2⌈L⌉+1 2⌈R⌉+1

≤ + − 12⌈L⌉+1 2⌈R⌉+1

≤ + − 12max(⌈L⌉,⌈R⌉)+1 2max(⌈L⌉,⌈R⌉)+1

≤ 2() − 12max(⌈L⌉,⌈R⌉)+1

= 2() − 12⌈𝖳𝗋𝖾𝖾(∙,L,R)⌉

= − 12⌈𝖳𝗋𝖾𝖾(∙,L,R)⌉+1

by defn of ||

by IH

algebra

by defn of max

algebra

by defn of ⌈⌉

as desired.

Define by
Basis: .
Recursive:
if , then

Size

Height

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| =

1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R))⌉ =

1 + max(⌈L⌉, ⌈R⌉)

8

Example: prove Example: prove for any rooted binary tree for any rooted binary tree

① Let be .
We will show that is true for every by structural induction.

② Base case ():
 so is true.

③ Inductive hypothesis:
Assume that and are true for some arbitrary .

④ Inductive step:
We want to prove that is true.

⑤ The result follows for all by structural induction.

||tt|| ≤≤ −− 1122⌈⌈tt⌉⌉++11 tt

P(t) |t| ≤ − 12⌈t⌉+1

P(t) t ∈ S

t = ∙

| ∙ | = 1 = − 1 = − 1 = − 121 20+1 2⌈∙⌉+1 P(∙)

P(L) P(R) L, R ∈ S

P(𝖳𝗋𝖾𝖾(∙, L, R))

|𝖳𝗋𝖾𝖾(∙, L, R)| = 1 + |L| + |R|

≤ 1 + (− 1) + (− 1)2⌈L⌉+1 2⌈R⌉+1

≤ + − 12⌈L⌉+1 2⌈R⌉+1

≤ + − 12max(⌈L⌉,⌈R⌉)+1 2max(⌈L⌉,⌈R⌉)+1

≤ 2() − 12max(⌈L⌉,⌈R⌉)+1

= 2() − 12⌈𝖳𝗋𝖾𝖾(∙,L,R)⌉

= − 12⌈𝖳𝗋𝖾𝖾(∙,L,R)⌉+1

by defn of ||

by IH

algebra

by defn of max

algebra

by defn of ⌈⌉

as desired.

t ∈ S

Define by
Basis: .
Recursive:
if , then

Size

Height

S

∙ ∈ S

L, R ∈ S

𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| =

1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R))⌉ =

1 + max(⌈L⌉, ⌈R⌉)

8

Regular expressionsRegular expressions
Definition, examples, applications.

9

Sets of strings as languagesSets of strings as languages

A language is a sets of strings with specific syntax, e.g.:
Syntactically correct Java/C/C++ programs.
The set of all strings over the alphabet .
Palindromes over .
Binary strings with no 1’s before 0’s.

Σ
∗

Σ

Σ

10

Sets of strings as languagesSets of strings as languages

A language is a sets of strings with specific syntax, e.g.:
Syntactically correct Java/C/C++ programs.
The set of all strings over the alphabet .
Palindromes over .
Binary strings with no 1’s before 0’s.

Σ
∗

Σ

Σ

Regular expressions let us specify regular languages, e.g.:
All binary strings.
The strings .
All strings that contain the string “CSE311”.

{0000, 0010, 1000, 1010}

10

Regular expressions over Regular expressions over : syntax: syntax

Basis step:
 are regular expressions.

 is a regular expression for any .
Recursive step:

If and are regular expressions, then so are
, , and .

ΣΣ

∅, ε

a a ∈ Σ

A B

AB A ∪ B A∗

11

Regular expressions over Regular expressions over : syntax: syntax

Basis step:
 are regular expressions.

 is a regular expression for any .
Recursive step:

If and are regular expressions, then so are
, , and .

ΣΣ

∅, ε

a a ∈ Σ

A B

AB A ∪ B A∗

Examples: regular expressions of
Basis: , , , .
Recursive: , , , etc.

Σ = {0, 1}

∅ ε 0 1

01011 0∗1∗ (0 ∪ 1)0(0 ∪ 1)0

11

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .

ΣΣ

Σ Σ

12

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .
 represents the set with no strings.

ΣΣ

Σ Σ

∅

12

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .
 represents the set with no strings.
 represents the set .

ΣΣ

Σ Σ

∅

ε {ε}

12

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .
 represents the set with no strings.
 represents the set .
 represents the set .

ΣΣ

Σ Σ

∅

ε {ε}

a {a}

12

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .
 represents the set with no strings.
 represents the set .
 represents the set .

 represents the concatenation of the sets represented by and :
.

ΣΣ

Σ Σ

∅

ε {ε}

a {a}

AB A B

{a ∙ b | a ∈ A, b ∈ B}

12

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .
 represents the set with no strings.
 represents the set .
 represents the set .

 represents the concatenation of the sets represented by and :
.

 represents the union of the sets represented by and : .

ΣΣ

Σ Σ

∅

ε {ε}

a {a}

AB A B

{a ∙ b | a ∈ A, b ∈ B}

A ∪ B A B A ∪ B

12

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .
 represents the set with no strings.
 represents the set .
 represents the set .

 represents the concatenation of the sets represented by and :
.

 represents the union of the sets represented by and : .
 represents the concatenation of the set represented by with itself zero or more

times:

ΣΣ

Σ Σ

∅

ε {ε}

a {a}

AB A B

{a ∙ b | a ∈ A, b ∈ B}

A ∪ B A B A ∪ B

A∗ A

= {ε} ∪ A ∪ AA ∪ AAA ∪ AAAA ∪ …A∗

12

Regular expressions over Regular expressions over : semantics: semantics

A regular expression over represents a set of strings over .
 represents the set with no strings.
 represents the set .
 represents the set .

 represents the concatenation of the sets represented by and :
.

 represents the union of the sets represented by and : .
 represents the concatenation of the set represented by with itself zero or more

times:

ΣΣ

Σ Σ

∅

ε {ε}

a {a}

AB A B

{a ∙ b | a ∈ A, b ∈ B}

A ∪ B A B A ∪ B

A∗ A

= {ε} ∪ A ∪ AA ∪ AAA ∪ AAAA ∪ …A∗

This just defines a recursive function definition for computing the meaning of a regular expression:
language(∅)

language(ε)

language(AB)

language(A ∪ B)

language()A∗

= {}

= {ε}

= {a ∙ b | a ∈ language(A), b ∈ language(B)}

= language(A) ∪ language(B)

= {ε} ∪ language(A) ∪ language(AA) ∪ …

12

Examples of regular expressionsExamples of regular expressions

001∗

0∗1∗

(0 ∪ 1)0(0 ∪ 1)0

(0∗1∗)∗

(0 ∪ 1 0110(0 ∪ 1)∗)∗

13

Examples of regular expressionsExamples of regular expressions

Binary strings with “00” followed by any number of 1s.
001∗

0∗1∗

(0 ∪ 1)0(0 ∪ 1)0

(0∗1∗)∗

(0 ∪ 1 0110(0 ∪ 1)∗)∗

13

Examples of regular expressionsExamples of regular expressions

Binary strings with “00” followed by any number of 1s.

Binary strings with any number of 0s followed by any number of 1s.

001∗

0∗1∗

(0 ∪ 1)0(0 ∪ 1)0

(0∗1∗)∗

(0 ∪ 1 0110(0 ∪ 1)∗)∗

13

Examples of regular expressionsExamples of regular expressions

Binary strings with “00” followed by any number of 1s.

Binary strings with any number of 0s followed by any number of 1s.

001∗

0∗1∗

(0 ∪ 1)0(0 ∪ 1)0

{0000, 0010, 1000, 1010}

(0∗1∗)∗

(0 ∪ 1 0110(0 ∪ 1)∗)∗

13

Examples of regular expressionsExamples of regular expressions

Binary strings with “00” followed by any number of 1s.

Binary strings with any number of 0s followed by any number of 1s.

All binary strings.

001∗

0∗1∗

(0 ∪ 1)0(0 ∪ 1)0

{0000, 0010, 1000, 1010}

(0∗1∗)∗

(0 ∪ 1 0110(0 ∪ 1)∗)∗

13

Examples of regular expressionsExamples of regular expressions

Binary strings with “00” followed by any number of 1s.

Binary strings with any number of 0s followed by any number of 1s.

All binary strings.

Binary strings that contain “0110”.

001∗

0∗1∗

(0 ∪ 1)0(0 ∪ 1)0

{0000, 0010, 1000, 1010}

(0∗1∗)∗

(0 ∪ 1 0110(0 ∪ 1)∗)∗

13

Regular expressions in practiceRegular expressions in practice

Used to define the tokens in a programming language.
Legal variable names, keywords, etc.

Used in grep, a Unix program that searches for patterns in a set of files.
For example, grep "311" *.md searches for the string “311” in all
Markdown files in the current directory.

Used in programs to process strings.
These slides are generated with the help of regular expressions :)

14

Context-free grammarsContext-free grammars
Syntax, semantics, and examples.

15

Regular expressions can specify only regular languagesRegular expressions can specify only regular languages

But many languages aren’t regular, including simple ones such as
palindromes, and
strings with an equal number of 0s and 1s.

Many programming language constructs are also irregular, such as
expressions with matched parentheses, and
properly formed arithmetic expressions.

16

Regular expressions can specify only regular languagesRegular expressions can specify only regular languages

But many languages aren’t regular, including simple ones such as
palindromes, and
strings with an equal number of 0s and 1s.

Many programming language constructs are also irregular, such as
expressions with matched parentheses, and
properly formed arithmetic expressions.

Context-free grammars are a more powerful formalism that lets us specify all of
these example languages (i.e., sets of strings)!

16

Context-free grammars over Context-free grammars over : syntax: syntax

A context-free grammar (CFG) is a finite set of production rules over:
An alphabet of terminal symbols.
A finite set of nonterminal symbols.
A start symbol from , usually denoted by (i.e.,).

ΣΣ

Σ

V

V S S ∈ V

17

Context-free grammars over Context-free grammars over : syntax: syntax

A context-free grammar (CFG) is a finite set of production rules over:
An alphabet of terminal symbols.
A finite set of nonterminal symbols.
A start symbol from , usually denoted by (i.e.,).

A production rule for a nonterminal takes the form

where each is a string of nonterminals and terminals.

ΣΣ

Σ

V

V S S ∈ V

A ∈ V

A → | | … |w1 w2 wk

∈ (V ∪ Σwi)∗

17

Context-free grammars over Context-free grammars over : syntax: syntax

A context-free grammar (CFG) is a finite set of production rules over:
An alphabet of terminal symbols.
A finite set of nonterminal symbols.
A start symbol from , usually denoted by (i.e.,).

A production rule for a nonterminal takes the form

where each is a string of nonterminals and terminals.

ΣΣ

Σ

V

V S S ∈ V

A ∈ V

A → | | … |w1 w2 wk

∈ (V ∪ Σwi)∗

Only nonterminals can appear on the le�-hand side of a production rule.

17

Context-free grammars over Context-free grammars over : semantics: semantics
A CFG over represents a set of strings over .

Compute (or generate) a string from this set as follows:

1. Begin with the start symbol as the current string.
2. If the current string contains a nonterminal , apply the rule

 to replace in the current string with one of the ’s.
3. Repeat step 2 until the current string contains only terminals.

ΣΣ

Σ Σ

S

A

A → | … |w1 wk A wi

18

Context-free grammars over Context-free grammars over : semantics: semantics
A CFG over represents a set of strings over .

Compute (or generate) a string from this set as follows:

1. Begin with the start symbol as the current string.
2. If the current string contains a nonterminal , apply the rule

 to replace in the current string with one of the ’s.
3. Repeat step 2 until the current string contains only terminals.

ΣΣ

Σ Σ

S

A

A → | … |w1 wk A wi

A CFG represents the set of all strings over that
can be generated in this way.

Σ

18

Example context-free grammarsExample context-free grammars

CFG for , strings an equal number of 0s and 1s.

S → 0S0 | 1S1 | 0 | 1 | ε

S → 0S | S1 | ε

S → (S) | SS | ε

{ : n ≥ 0}0n1n

19

Example context-free grammarsExample context-free grammars

The set of all binary palindromes.

CFG for , strings an equal number of 0s and 1s.

S → 0S0 | 1S1 | 0 | 1 | ε

S → 0S | S1 | ε

S → (S) | SS | ε

{ : n ≥ 0}0n1n

19

Example context-free grammarsExample context-free grammars

The set of all binary palindromes.

The set of strings denoted by the regular expression .

CFG for , strings an equal number of 0s and 1s.

S → 0S0 | 1S1 | 0 | 1 | ε

S → 0S | S1 | ε

0∗1∗

S → (S) | SS | ε

{ : n ≥ 0}0n1n

19

Example context-free grammarsExample context-free grammars

The set of all binary palindromes.

The set of strings denoted by the regular expression .

The set of all strings of matched parentheses.
CFG for , strings an equal number of 0s and 1s.

S → 0S0 | 1S1 | 0 | 1 | ε

S → 0S | S1 | ε

0∗1∗

S → (S) | SS | ε

{ : n ≥ 0}0n1n

19

Example context-free grammarsExample context-free grammars

The set of all binary palindromes.

The set of strings denoted by the regular expression .

The set of all strings of matched parentheses.
CFG for , strings an equal number of 0s and 1s.

S → 0S0 | 1S1 | 0 | 1 | ε

S → 0S | S1 | ε

0∗1∗

S → (S) | SS | ε

{ : n ≥ 0}0n1n

S → 0S1 | ε

19

SummarySummary
To prove using structural induction:

Show that holds for the elements in the basis step of .
Assume for every existing element of named in the recursive step.
Prove for every new element of created in the recursive step.

A regular expression defines a set of strings over an alphabet .
, , and are regular expressions.

If and are regular expressions, then so are .
Many practical applications, from grep to everyday programming.

Context-free grammars (CFGs) are a more expressive formalism for specifying
strings over an alphabet .

A CFG consists of a set of terminal symbols, a set of nonterminal symbols
including the distinguished start symbol, and a set of production rules that
specify how to rewrite nonterminals in a string.
Used for specifying programming language syntax and for parsing.

∀x ∈ S. P(x)

P S

P S

P S

Σ

∅ ε a ∈ Σ

A B (AB), (A ∪ B), A∗

Σ

20

