

CSE 311 Lecture 19: Structural Induction

Emina Torlak and Sami Davies

Topics

Recursively defined sets

A brief review of Lecture 18.

Structural induction

A method for proving properties of recursive structures.

Using structural induction

Example proofs about recursively defined numbers, strings, and trees.

Recursively defined sets

A brief review of Lecture 18.

Giving a recursive definition of a set

A recursive definition of a set *S* has the following parts:

Basis step specifies one or more initial members of *S*.

- **Recursive step** specifies the rule(s) for constructing new elements of *S* from the existing elements.
- **Exclusion (or closure) rule** states that every element in *S* follows from the basis step and a finite number of recursive steps.

The exclusion rule is assumed, so no need to state it explicitly.

Recursively strings and functions on them

Let Σ be a finite set of characters, and define Σ^* to be the set of of all strings over Σ :

Basis: $\varepsilon \in \Sigma^*$, where ε is the empty string.

```
Recursive: if w \in \Sigma^* and a \in \Sigma, then wa \in \Sigma^*
```

Length

```
len(\varepsilon) = 0
len(wa) = len(w) + 1 \text{ for } w \in \Sigma^*, a \in \Sigma
```

Reversal

$$\varepsilon^{\mathbf{R}} = \varepsilon$$

 $(wa)^{\mathbf{R}} = aw^{\mathbf{R}}$ for $w \in \Sigma^*, a \in \Sigma$

Concatenation

$$x \cdot \varepsilon = x \text{ for } x \in \Sigma^*$$
$$x \cdot (wa) = (x \cdot w)a \text{ for } x, w \in \Sigma^*, a \in \Sigma$$

Number of *c*'s in a string

$$\begin{aligned} &\#_c(\varepsilon) = 0 \\ &\#_c(wc) = \ \#_c(w) + 1 \text{ for } w \in \Sigma^* \\ &\#_c(wa) = \ \#_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma, a \neq c \end{aligned}$$

Rooted binary trees and functions on them

Rooted binary trees

Basis: $\cdot \in S$ **Recursive:** if $L \in S$ and $R \in S$, then Tree $(\cdot, L, R) \in S$

Size of a rooted binary tree

 $|\cdot| = 1$ |Tree(\cdot, L, R)| = 1 + |L| + |R|

Height of a rooted binary tree

 $\lceil \cdot \rceil = 0$ [Tree(\cdot, L, R)] = 1 + max ($\lceil L \rceil, \lceil R \rceil$)

Structural induction

A method for proving properties of recursive structures.

How can we prove properties of recursive structures?

Suppose that *S* is a recursively defined set.

And we want to prove that every element of *S* satisfies a predicate *P*.

Can we use ordinary induction to prove $\forall x \in S. P(x)$?

How can we prove properties of recursive structures?

Suppose that *S* is a recursively defined set.

And we want to prove that every element of *S* satisfies a predicate *P*.

Can we use ordinary induction to prove $\forall x \in S. P(x)$?

Yes! Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

How can we prove properties of recursive structures?

Suppose that *S* is a recursively defined set.

And we want to prove that every element of *S* satisfies a predicate *P*.

Can we use ordinary induction to prove $\forall x \in S. P(x)$?

Yes! Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

But this proof would be long and cumbersome to do! So we use **structural induction** instead.

- Follows from ordinary induction (on Q), while providing a more convenient proof template for reasoning about recursive structures.
- As powerful as ordinary induction, which is just structural induction applied to the recursively defined set of natural numbers.

Proving $\forall x \in S. P(x)$ by structural induction

(1) Let P(x) be [definition of P(x)].

We will show that P(x) is true for every $x \in S$ by structural induction.

(2) Base cases:

[Proof of $P(s_0), ..., P(s_m)$.]

③ Inductive hypothesis:

Assume that $P(y_0), ..., P(y_k)$ are true for some arbitrary

 $y_0, \ldots, y_k \in S.$

4 Inductive step:

We want to prove that P(y) is true. [Proof of P(y). The proof **must** invoke the structural inductive hypothesis.]

(5) The result follows for all $x \in S$ by structural induction.

Recursive definition of SBasis step: $s_0 \in S, ..., s_m \in S$. Recursive step: if $y_0, ..., y_k \in S$, then $y \in S$.

Proving $\forall x \in S. P(x)$ by structural induction

(1) Let P(x) be [definition of P(x)].

We will show that P(x) is true for every $x \in S$ by structural induction.

2 Base cases:

[Proof of $P(s_0), ..., P(s_m)$.]

③ Inductive hypothesis:

Assume that $P(y_0), ..., P(y_k)$ are true for some arbitrary $y_0, ..., y_k \in S$.

④ Inductive step:

We want to prove that P(y) is true. [Proof of P(y). The proof **must** invoke the structural inductive hypothesis.]

(5) The result follows for all $x \in S$ by structural induction.

Recursive definition of *S* Basis step: $s_0 \in S, ..., s_m \in S$. Recursive step: if $y_0, ..., y_k \in S$, then $y \in S$.

If the **recursive step** of *S* includes multiple rules for constructing new elements from existing elements, then ③ **assume** *P* for the existing elements in every rule, and ④ **prove** *P* for the new element in every rule.

Structural induction works just like ordinary induction

(1) Let P(x) be [definition of P(x)].

We will show that P(x) is true for every $x \in \mathbb{N}$ by structural induction.

2 Base cases:

[Proof of <u>P(0)</u>.]

③ Inductive hypothesis:

Assume that P(n) is true for some arbitrary $n \in \mathbb{N}$.

④ Inductive step:

We want to prove that P(n + 1) is true. [Proof of P(n + 1). The proof **must** invoke the structural inductive hypothesis.]

(5) The result follows for all $x \in \mathbb{N}$ by structural induction.

Recursive definition of N Basis step: $0 \in N$. Recursive step: if $n \in N$, then $n + 1 \in N$.

Ordinary induction is just structural induction applied to the recursively defined set of natural numbers!

Understanding structural induction

 $P(\cdot); \forall L, R \in S. (P(L) \land P(R)) \to P(\text{Tree}(\cdot, L, R))$ $\therefore \forall x \in S. P(x)$

How do we get $P(\text{Tree}(\cdot, \cdot, \text{Tree}(\cdot, \cdot, \cdot)))$ from $P(\cdot)$ and $\forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\cdot, L, R))$?

1. First, we have
$$\forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\cdot, L, R))$$

2. Next, we have $P(\cdot)$.
3. Intro \land on 2 gives us $P(\cdot) \land P(\cdot)$.
4. Elim \forall on 1 gives us $(P(\cdot) \land P(\cdot)) \rightarrow P(\text{Tree}(\cdot, \cdot, \cdot))$.
5. Modus Ponens on 3 and 4 gives us $P(\text{Tree}(\cdot, \cdot, \cdot))$.
6. Intro \land on 2 and 5 gives us $P(\cdot) \land P(\text{Tree}(\cdot, \cdot, \cdot))$.
7. Elim \forall on 1 gives us

 $(P(\cdot) \land P(\text{Tree}(\cdot, \cdot, \cdot)) \rightarrow P(\text{Tree}(\cdot, \cdot, \text{Tree}(\cdot, \cdot, \cdot)))$

8. Modus Ponens on 6 and 7 gives us $P(\text{Tree}(\cdot, \cdot, \text{Tree}(\cdot, \cdot, \cdot))).$

```
Tree(\cdot, L, R) \in S
P(\cdot)
P(\cdot) \land P(\cdot)
\downarrow (P(\cdot) \land P(\cdot)) \rightarrow P(Tree(\cdot, \cdot, \cdot))
P(Tree(\cdot, \cdot, \cdot))
P(\cdot) \land P(Tree(\cdot, \cdot, \cdot))
\downarrow (P(\cdot) \land P(Tree(\cdot, \cdot, \cdot)) \rightarrow P(Tree(\cdot, \cdot, Tree(\cdot, \cdot, \cdot)))
```

 $P(\text{Tree}(\cdot, \cdot, \text{Tree}(\cdot, \cdot, \cdot)))$

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$

Using structural induction

Example proofs about recursively defined numbers, strings, and trees.

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

(2) Base cases (x = 6, x = 15):

3 | 6 so *P*(6) holds, and 3 | 15 so *P*(15) holds.

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

(2) Base cases (*x* = 6, *x* = 15):

3 | 6 so *P*(6) holds, and 3 | 15 so *P*(15) holds.

③ Inductive hypothesis:

Assume that P(x), P(y) are true for some arbitrary $x, y \in S$.

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

② Base cases (*x* = 6, *x* = 15):

3 | 6 so *P*(6) holds, and 3 | 15 so *P*(15) holds.

③ Inductive hypothesis:

Assume that P(x), P(y) are true for some arbitrary $x, y \in S$.

④ Inductive step:

We want to prove that P(x + y) is true.

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

② Base cases (*x* = 6, *x* = 15):

3 | 6 so *P*(6) holds, and 3 | 15 so *P*(15) holds.

③ Inductive hypothesis:

Assume that P(x), P(y) are true for some arbitrary $x, y \in S$.

④ Inductive step:

We want to prove that P(x + y) is true. By the inductive hypothesis, 3 | x and 3 | y, so x = 3i and y = 3j for some $i, j \in Z$.

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

② Base cases (*x* = 6, *x* = 15):

3 | 6 so *P*(6) holds, and 3 | 15 so *P*(15) holds.

③ Inductive hypothesis:

Assume that P(x), P(y) are true for some arbitrary $x, y \in S$.

④ Inductive step:

We want to prove that P(x + y) is true. By the inductive hypothesis, 3 | x and 3 | y, so x = 3i and y = 3j for some $i, j \in \mathbb{Z}$. Therefore, x + y = 3i + 3j = 3(i + j) so 3 | (x + y).

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

② Base cases (*x* = 6, *x* = 15):

3 | 6 so *P*(6) holds, and 3 | 15 so *P*(15) holds.

③ Inductive hypothesis:

Assume that P(x), P(y) are true for some arbitrary $x, y \in S$.

④ Inductive step:

We want to prove that P(x + y) is true. By the inductive hypothesis, 3 | x and 3 | y, so x = 3i and y = 3j for some $i, j \in \mathbb{Z}$. Therefore, x + y = 3i + 3j = 3(i + j) so 3 | (x + y). Hence, P(x + y) is true.

(1) Let P(x) be 3 | x.

We will show that P(x) is true for every $x \in S$ by structural induction.

② Base cases (*x* = 6, *x* = 15):

3 | 6 so *P*(6) holds, and 3 | 15 so *P*(15) holds.

③ Inductive hypothesis:

Assume that P(x), P(y) are true for some arbitrary $x, y \in S$.

④ Inductive step:

We want to prove that P(x + y) is true. By the inductive hypothesis, 3 | x and 3 | y, so x = 3i and y = 3j for some $i, j \in Z$. Therefore, x + y = 3i + 3j = 3(i + j) so 3 | (x + y). Hence, P(x + y) is true.

(5) The result follows for all $x \in S$ by structural induction.

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation

 $x \cdot \varepsilon = x$ $x \cdot (wa) = (x \cdot w)a$

What object (x or y) to do structural induction on?

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. 14 Recursive:

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation $x \cdot \varepsilon = x$

 $x \cdot (wa) = (x \cdot w)a$

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

(2) Base case ($y = \varepsilon$):

For every $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon) since len(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation $x \cdot \varepsilon = x$

 $x \cdot (wa) = (x \cdot w)a$

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

(2) Base case ($y = \varepsilon$):

For every $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon) since len(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

③ Inductive hypothesis:

Assume that P(w) is true for some arbitrary $w \in \Sigma^*$.

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation $x \cdot \varepsilon = x$ $x \cdot (wa) = (x \cdot w)a$

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

(2) Base case ($y = \varepsilon$):

For every $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon) since len(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

③ Inductive hypothesis:

Assume that P(w) is true for some arbitrary $w \in \Sigma^*$.

4 Inductive step:

We want to prove that P(wa) is true for every $a \in \Sigma$.

Define Σ * by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation $x \cdot \varepsilon = x$

 $x \cdot (wa) = (x \cdot w)a$

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

(2) Base case ($y = \varepsilon$):

For every $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon) since len(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

③ Inductive hypothesis:

Assume that P(w) is true for some arbitrary $w \in \Sigma^*$.

4 Inductive step:

We want to prove that P(wa) is true for every $a \in \Sigma$.

Let $a \in \Sigma$ and $x \in \Sigma^*$ be arbitrary. Then

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation

 $x \cdot \varepsilon = x$ $x \cdot (wa) = (x \cdot w)a$

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

(2) Base case ($y = \varepsilon$):

For every $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon) since len(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

③ Inductive hypothesis:

Assume that P(w) is true for some arbitrary $w \in \Sigma^*$.

④ Inductive step:

We want to prove that P(wa) is true for every $a \in \Sigma$. Let $a \in \Sigma$ and $x \in \Sigma^*$ be arbitrary. Then

> $len(x \cdot wa) = len((x \cdot w)a)$ by defn of \cdot = len(x \cdot w) + 1 by defn of len = len(x) + len(w) + 1 by IH = len(x) + len(wa) by defn of len

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation $x \cdot \varepsilon = x$

 $x \cdot (wa) = (x \cdot w)a$

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

(2) Base case ($y = \varepsilon$):

For every $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon) since len(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

③ Inductive hypothesis:

Assume that P(w) is true for some arbitrary $w \in \Sigma^*$.

4 Inductive step:

We want to prove that P(wa) is true for every $a \in \Sigma$. Let $a \in \Sigma$ and $x \in \Sigma^*$ be arbitrary. Then

> $len(x \cdot wa) = len((x \cdot w)a)$ by defn of \cdot = len(x \cdot w) + 1 by defn of len = len(x) + len(w) + 1 by IH = len(x) + len(wa) by defn of len

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation $x \cdot \varepsilon = x$ $x \cdot (wa) = (x \cdot w)a$

So $len(x \cdot wa) = len(x) + len(wa)$ for all $x \in \Sigma^*$, and P(wa) is true.

(1) Let P(y) be $\forall x \in \Sigma^*$. len $(x \cdot y) = \text{len}(x) + \text{len}(y)$.

We will show that P(y) is true for every $y \in \Sigma^*$ by structural induction.

(2) Base case ($y = \varepsilon$):

For every $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon) since len(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

③ Inductive hypothesis:

Assume that P(w) is true for some arbitrary $w \in \Sigma^*$.

4 Inductive step:

We want to prove that P(wa) is true for every $a \in \Sigma$.

Let $a \in \Sigma$ and $x \in \Sigma^*$ be arbitrary. Then

$\operatorname{len}(x \cdot wa) = \operatorname{len}((x \cdot w)a)$	by defn of \cdot
$= \operatorname{len}(x \cdot w) + 1$	by defn of len
$= \operatorname{len}(x) + \operatorname{len}(w) + 1$	by IH
$= \operatorname{len}(x) + \operatorname{len}(wa)$	by defn of len

Define Σ^* by Basis: $\varepsilon \in \Sigma^*$. Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Length $len(\varepsilon) = 0$ len(wa) = len(w) + 1Concatenation $x \cdot \varepsilon = x$ $x \cdot (wa) = (x \cdot w)a$

So $len(x \cdot wa) = len(x) + len(wa)$ for all $x \in \Sigma^*$, and P(wa) is true.

(5) The result follows for all $y \in \Sigma^*$ by structural induction.

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$ Size $|\cdot| = 1$ $|\text{Tree}(\cdot, L, R)| =$ 1 + |L| + |R|Height $[\cdot] = 0$ $[\text{Tree}(\cdot, L, R))]$ $1 + \max([L], R)$

(1) Let P(t) be $|t| \leq 2^{\lceil t \rceil + 1} - 1$.

We will show that P(t) is true for every $t \in S$ by structural induction.

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$ Size $|\cdot| = 1$ $|\text{Tree}(\cdot, L, R)| =$ 1 + |L| + |R|Height $[\cdot] = 0$ $[\text{Tree}(\cdot, L, R))]$ $1 + \max([L], R)$

(1) Let P(t) be $|t| \le 2^{\lceil t \rceil + 1} - 1$. We will show that P(t) is true for every $t \in S$ by structural induction. (2) Base case ($t = \cdot$): $|\cdot| = 1 = 2^{1} - 1 = 2^{0+1} - 1 = 2^{\lceil \cdot \rceil + 1} - 1$ so $P(\cdot)$ is true.

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$ Size $|\cdot| = 1$ $|\text{Tree}(\cdot, L, R)| =$ 1 + |L| + |R|Height $[\cdot] = 0$ $[\text{Tree}(\cdot, L, R))]$

 $1 + \max([L])$

(1) Let P(t) be $|t| \le 2^{\lceil t \rceil + 1} - 1$. We will show that P(t) is true for every $t \in S$ by structural induction. (2) Base case $(t = \cdot)$: $|\cdot| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{\lceil \cdot \rceil + 1} - 1$ so $P(\cdot)$ is true. (3) Inductive hypothesis:

Assume that P(L) and P(R) are true for some arbitrary $L, R \in S$.

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$ Size $|\cdot| = 1$ $|\text{Tree}(\cdot, L, R)| =$ 1 + |L| + |R|Height $[\cdot] = 0$ $[\text{Tree}(\cdot, L, R))]$ $1 + \max([L], R)$

1 Let P(t) be $|t| \le 2^{\lceil t \rceil + 1} - 1$. We will show that P(t) is true for every $t \in S$ by structural induction. 2 Base case $(t = \cdot)$: $|\cdot| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{\lceil \cdot \rceil + 1} - 1$ so $P(\cdot)$ is true. 3 Inductive hypothesis:

Assume that P(L) and P(R) are true for some arbitrary $L, R \in S$.

④ Inductive step:

We want to prove that $P(\text{Tree}(\cdot, L, R))$ is true.

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$ Size $|\cdot| = 1$ $|Tree(\cdot, L, R)| =$ 1 + |L| + |R|Height $[\cdot] = 0$ $[Tree(\cdot, L, R))]$ 1 + max ([L], R)

(1) Let P(t) be $|t| \le 2^{\lceil t \rceil + 1} - 1$. We will show that P(t) is true for every $t \in S$ by structural induction. (2) Base case $(t = \cdot)$: $|\cdot| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{\lceil \cdot \rceil + 1} - 1$ so $P(\cdot)$ is true. (3) Inductive hypothesis: Assume that P(L) and P(R) are true for some arbitrary $L, R \in S$.

④ Inductive step:

We want to prove that $P(\text{Tree}(\cdot, L, R))$ is true.

$$\begin{aligned} |\text{Tree}(\cdot, L, R)| &= 1 + |L| + |R| \\ &\leq 1 + (2^{\lceil L \rceil + 1} - 1) + (2^{\lceil R \rceil + 1} - 1) \\ &\leq 2^{\lceil L \rceil + 1} + 2^{\lceil R \rceil + 1} - 1 \\ &\leq 2^{\max(\lceil L \rceil, \lceil R \rceil) + 1} + 2^{\max(\lceil L \rceil, \lceil R \rceil) + 1} - 1 \\ &\leq 2(2^{\max(\lceil L \rceil, \lceil R \rceil) + 1}) - 1 \\ &= 2(2^{\lceil \text{Tree}(\cdot, L, R) \rceil}) - 1 \\ &= 2^{\lceil \text{Tree}(\cdot, L, R) \rceil + 1} - 1 \end{aligned}$$

by defn of || by IH algebra by defn of max algebra by defn of []

which is the desired result.

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$ Size

$$|\cdot| = 1$$

|Tree(\cdots, L, R)| =
1 + |L| + |R|

Height

 $\begin{bmatrix} \cdot \end{bmatrix} = 0$ [Tree(\cdot , L, R))] 1 + max ([L].

(1) Let P(t) be $|t| \le 2^{\lceil t \rceil + 1} - 1$. We will show that P(t) is true for every $t \in S$ by structural induction. (2) Base case $(t = \cdot)$: $|\cdot| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{\lceil \cdot \rceil + 1} - 1$ so $P(\cdot)$ is true. (3) Inductive hypothesis: Assume that P(L) and P(R) are true for some arbitrary $L, R \in S$. (4) Inductive step:

We want to prove that $P(\text{Tree}(\cdot, L, R))$ is true.

$$|\text{Tree}(\cdot, L, R)| = 1 + |L| + |R|$$

$$\leq 1 + (2^{\lceil L \rceil + 1} - 1) + (2^{\lceil R \rceil + 1} - 1)$$

$$\leq 2^{\lceil L \rceil + 1} + 2^{\lceil R \rceil + 1} - 1$$

$$\leq 2^{\max(\lceil L \rceil, \lceil R \rceil) + 1} + 2^{\max(\lceil L \rceil, \lceil R \rceil) + 1} - 1$$

$$\leq 2(2^{\max(\lceil L \rceil, \lceil R \rceil) + 1}) - 1$$

$$= 2(2^{\lceil \text{Tree}(\cdot, L, R) \rceil}) - 1$$

$$= 2^{\lceil \text{Tree}(\cdot, L, R) \rceil + 1} - 1$$

by defn of || by IH algebra by defn of max algebra by defn of []

which is the desired result.

Define *S* by Basis: $\cdot \in S$. Recursive: if $L, R \in S$, then Tree $(\cdot, L, R) \in S$ Size $|\cdot| = 1$ $|\text{Tree}(\cdot, L, R)| =$ 1 + |L| + |R|

```
Height
```

```
\begin{bmatrix} \cdot \end{bmatrix} = 0

\begin{bmatrix} \text{Tree}(\cdot, L, R) \end{bmatrix}

1 + \max(\begin{bmatrix} L \end{bmatrix}, L = 0
```

(5) The result follows for all $t \in S$ by structural induction.

Summary

To define a set recursively, specify its basis and recursive step. Recursive set definitions assume the *exclusion rule*. We use recursive functions to operate on elements of recursive sets.

Use structural induction to prove properties of recursive structures. Structural induction follows from ordinary induction but is easier to use.

To prove $\forall x \in S. P(x)$ using structural induction:

Show that *P* holds for the elements in the basis step of *S*.Assume *P* for every existing element of *S* named in the recursive step.Prove *P* for every new element of *S* created in the recursive step.