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Giving a recursive definition of a setGiving a recursive definition of a set

A recursive definition of a set S has the following parts:
Basis step specifies one or more initial members of S.
Recursive step specifies the rule(s) for constructing new elements of S from
the existing elements.
Exclusion (or closure) rule states that every element in S follows from the
basis step and a finite number of recursive steps.

The exclusion rule is assumed, so no need to state it explicitly.
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Recursively strings and functions on themRecursively strings and functions on them

Let Σ be a finite set of characters, and define Σ ∗  to be the set of of all strings over Σ:
Basis: ε ∈ Σ ∗ , where ε is the empty string.
Recursive: if w ∈ Σ ∗  and a ∈ Σ, then wa ∈ Σ ∗

Length
len(ε) = 0
len(wa) = len(w) + 1 for w ∈ Σ ∗ , a ∈ Σ

Reversal
εR = ε
(wa)R = awR for w ∈ Σ ∗ , a ∈ Σ

Concatenation
x ∙ ε = x for x ∈ Σ ∗

x ∙ (wa) = (x ∙ w)a for x, w ∈ Σ ∗ , a ∈ Σ
Number of c’s in a string

#c(ε) = 0

#c(wc) =  #c(w) + 1 for w ∈ Σ ∗

#c(wa) =  #c(w) for w ∈ Σ ∗ , a ∈ Σ, a ≠ c 5



Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis: ∙ ∈ S
Recursive: if L ∈ S and R ∈ S, then Tree( ∙ , L, R) ∈ S

Size of a rooted binary tree
| ∙ | = 1
|Tree( ∙ , L, R) | = 1 + | L | + |R|

Height of a rooted binary tree
⌈ ∙ ⌉ = 0
⌈Tree( ∙ , L, R)⌉ = 1 + max (⌈L⌉, ⌈R⌉)

L R

6



Structural inductionStructural induction
A method for proving properties of recursive structures.
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How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that S is a recursively defined set.
And we want to prove that every element of S satisfies a predicate P.

Can we use ordinary induction to prove ∀x ∈ S. P(x)?
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How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that S is a recursively defined set.
And we want to prove that every element of S satisfies a predicate P.

Can we use ordinary induction to prove ∀x ∈ S. P(x)?
Yes! Define Q(n) to be “for all x ∈ S that can be constructed in at most n
recursive steps, P(x) is true.”
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How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that S is a recursively defined set.
And we want to prove that every element of S satisfies a predicate P.

Can we use ordinary induction to prove ∀x ∈ S. P(x)?
Yes! Define Q(n) to be “for all x ∈ S that can be constructed in at most n
recursive steps, P(x) is true.”

But this proof would be long and cumbersome to do!
So we use structural induction instead.

Follows from ordinary induction (on Q), while providing a more convenient
proof template for reasoning about recursive structures.
As powerful as ordinary induction, which is just structural induction applied
to the recursively defined set of natural numbers.
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Proving Proving ∀∀xx ∈∈ SS.. PP((xx)) by structural induction by structural induction

① Let P(x) be [ definition of P(x) ].
We will show that P(x) is true for every x ∈ S by structural
induction.

② Base cases:
[ Proof of P(s0), …, P(sm). ]

③ Inductive hypothesis:
Assume that P(y0), …, P(yk) are true for some arbitrary 
y0, …, yk ∈ S.

④ Inductive step:
We want to prove that P(y) is true.
[ Proof of P(y). The proof must invoke the structural
inductive hypothesis. ]

⑤ The result follows for all x ∈ S by structural induction.
 

Recursive definition of S
Basis step: 
s0 ∈ S, …, sm ∈ S.
Recursive step:
if y0, …, yk ∈ S, then 
y ∈ S.
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Proving Proving ∀∀xx ∈∈ SS.. PP((xx)) by structural induction by structural induction

① Let P(x) be [ definition of P(x) ].
We will show that P(x) is true for every x ∈ S by structural
induction.

② Base cases:
[ Proof of P(s0), …, P(sm). ]

③ Inductive hypothesis:
Assume that P(y0), …, P(yk) are true for some arbitrary 
y0, …, yk ∈ S.

④ Inductive step:
We want to prove that P(y) is true.
[ Proof of P(y). The proof must invoke the structural
inductive hypothesis. ]

⑤ The result follows for all x ∈ S by structural induction.
 

Recursive definition of S
Basis step: 
s0 ∈ S, …, sm ∈ S.
Recursive step:
if y0, …, yk ∈ S, then 
y ∈ S.

If the recursive step of S
includes multiple rules for
constructing new elements
from existing elements, then 
③ assume P for the existing
elements in every rule, and 
④ prove P for the new
element in every rule.
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Structural induction works just like ordinary inductionStructural induction works just like ordinary induction

① Let P(x) be [ definition of P(x) ].
We will show that P(x) is true for every x ∈ N by structural
induction.

② Base cases:
[ Proof of P(0). ]

③ Inductive hypothesis:
Assume that P(n) is true for some arbitrary n ∈ N.
 

④ Inductive step:
We want to prove that P(n + 1) is true.
[ Proof of P(n + 1). The proof must invoke the structural
inductive hypothesis. ]

⑤ The result follows for all x ∈ N by structural induction.
 

Recursive definition of N
Basis step: 0 ∈ N.
Recursive step:
if n ∈ N, then n + 1 ∈ N.

Ordinary induction is just
structural induction applied
to the recursively defined set
of natural numbers!
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Understanding structural inductionUnderstanding structural induction

P( ∙ ); ∀L, R ∈ S. (P(L) ∧ P(R)) → P(Tree( ∙ , L, R))
∴ ∀x ∈ S. P(x)

How do we get P(Tree( ∙ , ∙ , Tree( ∙ , ∙ , ∙ ))) from P( ∙ ) and 
∀L, R ∈ S. (P(L) ∧ P(R)) → P(Tree( ∙ , L, R))?

1. First, we have ∀L, R ∈ S. (P(L) ∧ P(R)) → P(Tree( ∙ , L, R))  
2. Next, we have P( ∙ ). P( ∙ )
3. Intro ∧  on 2 gives us P( ∙ ) ∧ P( ∙ ). P( ∙ ) ∧ P( ∙ )
4. Elim ∀ on 1 gives us (P( ∙ ) ∧ P( ∙ )) → P(Tree( ∙ , ∙ , ∙ )).  ⇓ (P ( ∙ ) ∧P ( ∙ ) ) →P ( Tree ( ∙ , ∙ , ∙ ) )
5. Modus Ponens on 3 and 4 gives us P(Tree( ∙ , ∙ , ∙ )). P(Tree( ∙ , ∙ , ∙ ))
6. Intro ∧  on 2 and 5 gives us P( ∙ ) ∧ P(Tree( ∙ , ∙ , ∙ )). P( ∙ ) ∧ P(Tree( ∙ , ∙ , ∙ ))
7. Elim ∀ on 1 gives us 

(P( ∙ ) ∧ P(Tree( ∙ , ∙ , ∙ )) → P(Tree( ∙ , ∙ , Tree( ∙ , ∙ , ∙ )))
.

 ⇓ (P ( ∙ ) ∧P ( Tree ( ∙ , ∙ , ∙ ) ) →P ( Tree ( ∙ , ∙ , Tree ( ∙ , ∙ , ∙ )

8. Modus Ponens on 6 and 7 gives us 
P(Tree( ∙ , ∙ , Tree( ∙ , ∙ , ∙ ))).

P(Tree( ∙ , ∙ , Tree( ∙ , ∙ , ∙ )))

Define S by
Basis: ∙ ∈ S.
Recursive:
if L, R ∈ S, then
Tree( ∙ , L, R) ∈ S
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Using structural inductionUsing structural induction
Example proofs about recursively defined numbers, strings, and trees.
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Prove that every Prove that every xx ∈∈ SS is divisible by 3 is divisible by 3

 

Define S by
Basis: 6 ∈ S, 15 ∈ S.
Recursive: if x, y ∈ S, then 
x + y ∈ S.
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Prove that every Prove that every xx ∈∈ SS is divisible by 3 is divisible by 3

① Let P(x) be 3 | x.
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structural induction.
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Prove Prove lleenn((xx ∙∙ yy)) == lleenn((xx)) ++ lleenn((yy)) for all  for all xx,, yy ∈∈ ΣΣ ∗∗

 

Define Σ ∗  by
Basis: ε ∈ Σ ∗ .
Recursive:
if w ∈ Σ ∗  and 
a ∈ Σ,
then wa ∈ Σ ∗

Length
len(ε) = 0
len(wa) = len(w) + 1

Concatenation
x ∙ ε = x
x ∙ (wa) = (x ∙ w)a
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Prove Prove lleenn((xx ∙∙ yy)) == lleenn((xx)) ++ lleenn((yy)) for all  for all xx,, yy ∈∈ ΣΣ ∗∗

What object (x or y) to do structural induction on?

Define Σ ∗  by
Basis: ε ∈ Σ ∗ .
Recursive:
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Prove Prove ||tt || ≤≤ 22 ⌈⌈ tt ⌉⌉ ++ 11 −− 11 for every rooted binary tree  for every rooted binary tree tt

 

Define S by
Basis: ∙ ∈ S.
Recursive:
if L, R ∈ S, then
Tree( ∙ , L, R) ∈ S

Size
| ∙ | = 1
|Tree( ∙ , L, R) | =

1 + | L | + |R|

Height
⌈ ∙ ⌉ = 0
⌈Tree( ∙ , L, R))⌉

1 + max (⌈L⌉,
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SummarySummary
To define a set recursively, specify its basis and recursive step.

Recursive set definitions assume the exclusion rule.
We use recursive functions to operate on elements of recursive sets.

Use structural induction to prove properties of recursive structures.
Structural induction follows from ordinary induction but is easier to use.

To prove ∀x ∈ S. P(x) using structural induction:
Show that P holds for the elements in the basis step of S.
Assume P for every existing element of S named in the recursive step.
Prove P for every new element of S created in the recursive step.
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