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Advice for Homework 6Advice for Homework 6
Start early, start early, start early, …
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Homework 6 has fewer problems but …Homework 6 has fewer problems but …

You may find it to be more work than the previous assignments.
So please start early :)

Pay special attention to Problem 6.5.
Requires keeping careful track of
(1) what you know and
(2) what you need to prove.
You will have to be methodical and meticulous.
Details will make or break this proof.
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Homework 6 has fewer problems but …Homework 6 has fewer problems but …

You may find it to be more work than the previous assignments.
So please start early :)

Pay special attention to Problem 6.5.
Requires keeping careful track of
(1) what you know and
(2) what you need to prove.
You will have to be methodical and meticulous.
Details will make or break this proof.

Before starting to work on this problem, we strongly advise you to write out the
set  for . Then, calculate  and  for each . From this,
you will be able to guess the answer for part (a), which you can then prove. You
will also convince yourself that the theorem you need to prove for (b) is true!

Tt t ∈ {1, 2, 3, 4} ( )Tt St Tt
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Strong induction and recursive functionsStrong induction and recursive functions
A brief review of .Lecture 17
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Recall why (strong) induction worksRecall why (strong) induction works

Induction

How do we get  from  and ?

1. First, we have .
2. Since  for all , we have .
3. Applying Modus Ponens to 1 and 2, we get .
4. Since  for all , we have .
5. Applying Modus Ponens to 3 and 4, we get .
6. Since  for all , we have .
7. Applying Modus Ponens to 6 and 7, we get .

P(0); ∀k. P(k) → P(k + 1)

∴ ∀n. P(n)

Domain: natural numbers ( ).ℕ

P(3) P(0) ∀k. P(k) → P(k + 1)

P(0) P(0)

P(k) → P(k + 1) k P(0) → P(1)   ⇓ P(0)→P(1)

P(1) P(1)

P(k) → P(k + 1) k P(1) → P(2)   ⇓ P(1)→P(2)

P(2) P(2)

P(k) → P(k + 1) k P(2) → P(3)   ⇓ P(2)→P(3)

P(3) P(3)

Note that we have  when proving . 
So we can safely assume , rather than just .

P(0), … , P(k) k + 1

P(0) ∧ … ∧ P(k) P(k)
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Strong inductive proofs for any base case Strong inductive proofs for any base case 

① Let  be [ definition of  ].
We will show that  is true for every integer  by
strong induction.

② Base case ( ):
[ Proof of . ]

③ Inductive hypothesis:
Suppose that for some arbitrary integer ,  is true for
every integer .

④ Inductive step:
We want to prove that  is true.
[ Proof of . The proof must invoke the strong inductive
hypothesis. ]

⑤ The result follows for all  by strong induction.
 

bb ∈∈ ℤℤ

P(n) P(n)

P(n) n ≥ b

n = b

P(b)

k ≥ b P(j)

b ≤ j ≤ k

P(k + 1)

P(k + 1)

n ≥ b

P(b); ∀k. (P(b) ∧ P(b + 1) ∧ … ∧ P(k)) → P

∴ ∀n ≥ b. P(n)
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Strong induction is particularly useful when …Strong induction is particularly useful when …
We need to reason about procedures that given an input  invoke themselves
recursively on an input different from .

Example:
Euclidean algorithm for computing .

We use strong induction to reason about this algorithm and other functions
with recursive definitions.

k

k − 1

GCD(a, b)

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
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Recursively defined functions with a single base caseRecursively defined functions with a single base case

To define a recursive function  over , give its output in two cases:
Base case: the value of .
Recursive case: the value of , given in terms of .

 for 
 for 
 for 

Examples:

f ℕ

f (0)

f (n + 1) f (n)

F(0) = 1, F(n + 1) = F(n) + 1 n + 1 n ∈ ℕ

G(0) = 1, G(n + 1) = 2 ⋅ G(n) 2n n ∈ ℕ

K(0) = 1, K(n + 1) = (n + 1) ⋅ K(n) n! n ∈ ℕ

When the recursive case refers only to , as in these examples, we can prove
properties of  easily using ordinary induction.

f (n)

f (n)
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Recursively defined functions with multiple base casesRecursively defined functions with multiple base cases

A recursive function can have more than one base case.
Base cases give the value of  where .
Recursive case defines  in terms of  for all 

, or it defines  in terms of .

Example: Fibonacci numbers

f (0), … , f (m) m ≥ 0

f (n + 1) f (n − m), … , f (n − 1), f (n)

n ≥ m + 1 f (n) f (n − 1 − m), … , f (n − 1)

= 0f0
= 1f1
= +  for all n ≥ 2fn fn−1 fn−2

When the recursive function has multiple
base cases, we use strong induction to
prove its properties. And we also extend the
strong induction proof template to account
for the additional base cases.
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Strong inductive proofs with base cases Strong inductive proofs with base cases 

① Let  be [ definition of  ].
We will show that  is true for every integer  by strong induction.

② Base cases ( ):
[ Proof of . ]

③ Inductive hypothesis:
Suppose that for some arbitrary integer ,  is true for every integer 

.
④ Inductive step:

We want to prove that  is true.
[ Proof of . The proof must invoke the strong inductive hypothesis. ]

⑤ The result follows for all  by strong induction.
 

bb,, …… ,, bb ++ mm

P(n) P(n)

P(n) n ≥ b

n = b, … , n = b + m

P(b), … , P(b + m)

k ≥ b + m P(j)

b ≤ j ≤ k

P(k + 1)

P(k + 1)

n ≥ b
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Recursively defined setsRecursively defined sets
Recursive definitions of sets.
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Giving a recursive definition of a setGiving a recursive definition of a set

A recursive definition of a set  has the following parts:
Basis step specifies one or more initial members of .
Recursive step specifies the rule(s) for constructing new elements of  from
the existing elements.
Exclusion (or closure) rule states that every element in  follows from the
basis step and a finite number of recursive steps.

S

S

S

S
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Giving a recursive definition of a setGiving a recursive definition of a set

A recursive definition of a set  has the following parts:
Basis step specifies one or more initial members of .
Recursive step specifies the rule(s) for constructing new elements of  from
the existing elements.
Exclusion (or closure) rule states that every element in  follows from the
basis step and a finite number of recursive steps.

S

S

S

S

The exclusion rule is assumed, so no need to state it explicitly.
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Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis: 
Recursive: if , then 

0 ∈ S

n ∈ S n + 1 ∈ S
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Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
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Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis: 
Recursive: if , then 

Even natural numbers
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Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis: 
Recursive: if , then 

Even natural numbers
Basis: 
Recursive: if , then 

Powers of 3
Basis: 
Recursive: if , then 

Fibonacci numbers
Basis: 
Recursive: if  and , then 

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

1 ∈ S

x ∈ S 3x ∈ S

(0, 0) ∈ S, (1, 1) ∈ S

(n − 1, x) ∈ S (n − 2, y) ∈ S (n, x + y) ∈ S
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More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet  is any finite set of characters.
The set  of strings over the alphabet  is defined as follows.
Basis: , where  is the empty string.
Recursive: if  and , then 

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

15
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More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet  is any finite set of characters.
The set  of strings over the alphabet  is defined as follows.
Basis: , where  is the empty string.
Recursive: if  and , then 

Palindromes (strings that are the same forwards and backwards)
Basis:  and  for every 
Recursive: if , then  for every 

All binary strings with no 1’s before 0’s
Basis: 
Recursive: if , then  and 

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

ε ∈ S a ∈ S a ∈ Σ

p ∈ S apa ∈ S a ∈ Σ

ε ∈ S

x ∈ S 0x ∈ S x1 ∈ S
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Functions on recursively defined setsFunctions on recursively defined sets

Length

 for , 
𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

Define  by
Basis: , where  is the
empty string.
Recursive: if  and 

, then 

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗
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Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis: 
Recursive: if  and , then 

L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S
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Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis: 
Recursive: if  and , then 

Size of a rooted binary tree

Height of a rooted binary tree L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1
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Structural inductionStructural induction
A method for proving properties of recursive structures.

18



How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that  is a recursively defined set.
And we want to prove that every element of  satisfies a predicate .

Can we use ordinary induction to prove ?

S

S P

∀x ∈ S. P(x)
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How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that  is a recursively defined set.
And we want to prove that every element of  satisfies a predicate .

Can we use ordinary induction to prove ?
Yes! Define  to be “for all  that can be constructed in at most 
recursive steps,  is true.”

S

S P

∀x ∈ S. P(x)

Q(n) x ∈ S n

P(x)
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How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that  is a recursively defined set.
And we want to prove that every element of  satisfies a predicate .

Can we use ordinary induction to prove ?
Yes! Define  to be “for all  that can be constructed in at most 
recursive steps,  is true.”

S

S P

∀x ∈ S. P(x)

Q(n) x ∈ S n

P(x)

But this proof would be long and cumbersome to do!
So we use structural induction instead.

Follows from ordinary induction (on ), while providing a more convenient
proof template for reasoning about recursive structures.
As powerful as ordinary induction, which is just structural induction applied
to the recursively defined set of natural numbers.

Q
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Proving Proving  by structural induction by structural induction

① Let  be [ definition of  ].
We will show that  is true for every  by structural
induction.

② Base cases:
[ Proof of . ]

③ Inductive hypothesis:
Assume that  are true for some arbitrary 

.
④ Inductive step:

We want to prove that  is true.
[ Proof of . The proof must invoke the structural
inductive hypothesis. ]

⑤ The result follows for all  by structural induction.
 

∀∀xx ∈∈ SS.. PP((xx))

P(x) P(x)

P(x) x ∈ S

P( ), … , P( )s0 sm

P( ), … , P( )y0 yk

, … , ∈ Sy0 yk

P(y)

P(y)

x ∈ S

Recursive definition of 
Basis step: 

.
Recursive step:
if , then 

.

S

∈ S, … , ∈ Ss0 sm

, … , ∈ Sy0 yk

y ∈ S
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① Let  be [ definition of  ].
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induction.

② Base cases:
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③ Inductive hypothesis:
Assume that  are true for some arbitrary 

.
④ Inductive step:

We want to prove that  is true.
[ Proof of . The proof must invoke the structural
inductive hypothesis. ]

⑤ The result follows for all  by structural induction.
 

∀∀xx ∈∈ SS.. PP((xx))

P(x) P(x)

P(x) x ∈ S

P( ), … , P( )s0 sm

P( ), … , P( )y0 yk

, … , ∈ Sy0 yk

P(y)

P(y)

x ∈ S

Recursive definition of 
Basis step: 

.
Recursive step:
if , then 

.

S

∈ S, … , ∈ Ss0 sm

, … , ∈ Sy0 yk

y ∈ S

If the recursive step of 
includes multiple rules for
constructing new elements
from existing elements, then 
③ assume  for the existing
elements in every rule, and 
④ prove  for the new
element in every rule.

S

P

P
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SummarySummary
To define a function recursively, specify its base case(s) and recursive case.

Use (strong) induction to prove theorems about recursive functions.
To define a set recursively, specify its basis and recursive step.

Recursive set definitions assume the exclusion rule.
We use recursive functions to operate on elements of recursive sets.

Use structural induction to prove properties of recursive structures.
Structural induction follows from ordinary induction but is easier to use.
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