
CSE 311 Lecture 18: RecursivelyCSE 311 Lecture 18: Recursively
Defined Functions and SetsDefined Functions and Sets

 and Emina Torlak Sami Davies

1

https://homes.cs.washington.edu/~emina/
http://samidavies.com/

TopicsTopics
Advice for Homework 6

Start early, start early, start early, …
Strong induction and recursive functions

A brief review of .
Recursively defined sets

Recursive definitions of sets.
Structural induction

A method for proving properties of recursive structures.

Lecture 17

2

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture17.html

Advice for Homework 6Advice for Homework 6
Start early, start early, start early, …

3

Homework 6 has fewer problems but …Homework 6 has fewer problems but …

You may find it to be more work than the previous assignments.
So please start early :)

Pay special attention to Problem 6.5.
Requires keeping careful track of
(1) what you know and
(2) what you need to prove.
You will have to be methodical and meticulous.
Details will make or break this proof.

4

Homework 6 has fewer problems but …Homework 6 has fewer problems but …

You may find it to be more work than the previous assignments.
So please start early :)

Pay special attention to Problem 6.5.
Requires keeping careful track of
(1) what you know and
(2) what you need to prove.
You will have to be methodical and meticulous.
Details will make or break this proof.

Before starting to work on this problem, we strongly advise you to write out the
set for . Then, calculate and for each . From this,
you will be able to guess the answer for part (a), which you can then prove. You
will also convince yourself that the theorem you need to prove for (b) is true!

Tt t ∈ {1, 2, 3, 4} ()Tt St Tt

4

Strong induction and recursive functionsStrong induction and recursive functions
A brief review of .Lecture 17

5

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture17.html

Recall why (strong) induction worksRecall why (strong) induction works

Induction

How do we get from and ?

1. First, we have .
2. Since for all , we have .
3. Applying Modus Ponens to 1 and 2, we get .
4. Since for all , we have .
5. Applying Modus Ponens to 3 and 4, we get .
6. Since for all , we have .
7. Applying Modus Ponens to 6 and 7, we get .

P(0); ∀k. P(k) → P(k + 1)

∴ ∀n. P(n)

Domain: natural numbers ().ℕ

P(3) P(0) ∀k. P(k) → P(k + 1)

P(0) P(0)

P(k) → P(k + 1) k P(0) → P(1) ⇓ P(0)→P(1)

P(1) P(1)

P(k) → P(k + 1) k P(1) → P(2) ⇓ P(1)→P(2)

P(2) P(2)

P(k) → P(k + 1) k P(2) → P(3) ⇓ P(2)→P(3)

P(3) P(3)

Note that we have when proving .
So we can safely assume , rather than just .

P(0), … , P(k) k + 1

P(0) ∧ … ∧ P(k) P(k)

6

Strong inductive proofs for any base case Strong inductive proofs for any base case

① Let be [definition of].
We will show that is true for every integer by
strong induction.

② Base case ():
[Proof of .]

③ Inductive hypothesis:
Suppose that for some arbitrary integer , is true for
every integer .

④ Inductive step:
We want to prove that is true.
[Proof of . The proof must invoke the strong inductive
hypothesis.]

⑤ The result follows for all by strong induction.

bb ∈∈ ℤℤ

P(n) P(n)

P(n) n ≥ b

n = b

P(b)

k ≥ b P(j)

b ≤ j ≤ k

P(k + 1)

P(k + 1)

n ≥ b

P(b); ∀k. (P(b) ∧ P(b + 1) ∧ … ∧ P(k)) → P

∴ ∀n ≥ b. P(n)

7

Strong induction is particularly useful when …Strong induction is particularly useful when …
We need to reason about procedures that given an input invoke themselves
recursively on an input different from .

Example:
Euclidean algorithm for computing .

We use strong induction to reason about this algorithm and other functions
with recursive definitions.

k

k − 1

GCD(a, b)

// Assumes a >= b >= 0.
public static int gcd(int a, int b) {
 if (b == 0)
 return a; // GCD(a, 0) = a
 else
 return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
}

8

Recursively defined functions with a single base caseRecursively defined functions with a single base case

To define a recursive function over , give its output in two cases:
Base case: the value of .
Recursive case: the value of , given in terms of .

 for
 for
 for

Examples:

f ℕ

f (0)

f (n + 1) f (n)

F(0) = 1, F(n + 1) = F(n) + 1 n + 1 n ∈ ℕ

G(0) = 1, G(n + 1) = 2 ⋅ G(n) 2n n ∈ ℕ

K(0) = 1, K(n + 1) = (n + 1) ⋅ K(n) n! n ∈ ℕ

When the recursive case refers only to , as in these examples, we can prove
properties of easily using ordinary induction.

f (n)

f (n)

9

Recursively defined functions with multiple base casesRecursively defined functions with multiple base cases

A recursive function can have more than one base case.
Base cases give the value of where .
Recursive case defines in terms of for all

, or it defines in terms of .

Example: Fibonacci numbers

f (0), … , f (m) m ≥ 0

f (n + 1) f (n − m), … , f (n − 1), f (n)

n ≥ m + 1 f (n) f (n − 1 − m), … , f (n − 1)

= 0f0
= 1f1
= + for all n ≥ 2fn fn−1 fn−2

When the recursive function has multiple
base cases, we use strong induction to
prove its properties. And we also extend the
strong induction proof template to account
for the additional base cases.

10

Strong inductive proofs with base cases Strong inductive proofs with base cases

① Let be [definition of].
We will show that is true for every integer by strong induction.

② Base cases ():
[Proof of .]

③ Inductive hypothesis:
Suppose that for some arbitrary integer , is true for every integer

.
④ Inductive step:

We want to prove that is true.
[Proof of . The proof must invoke the strong inductive hypothesis.]

⑤ The result follows for all by strong induction.

bb,, …… ,, bb ++ mm

P(n) P(n)

P(n) n ≥ b

n = b, … , n = b + m

P(b), … , P(b + m)

k ≥ b + m P(j)

b ≤ j ≤ k

P(k + 1)

P(k + 1)

n ≥ b

11

Recursively defined setsRecursively defined sets
Recursive definitions of sets.

12

Giving a recursive definition of a setGiving a recursive definition of a set

A recursive definition of a set has the following parts:
Basis step specifies one or more initial members of .
Recursive step specifies the rule(s) for constructing new elements of from
the existing elements.
Exclusion (or closure) rule states that every element in follows from the
basis step and a finite number of recursive steps.

S

S

S

S

13

Giving a recursive definition of a setGiving a recursive definition of a set

A recursive definition of a set has the following parts:
Basis step specifies one or more initial members of .
Recursive step specifies the rule(s) for constructing new elements of from
the existing elements.
Exclusion (or closure) rule states that every element in follows from the
basis step and a finite number of recursive steps.

S

S

S

S

The exclusion rule is assumed, so no need to state it explicitly.

13

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

0 ∈ S

n ∈ S n + 1 ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers

0 ∈ S

n ∈ S n + 1 ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:
Recursive: if , then

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:
Recursive: if , then

Powers of 3

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:
Recursive: if , then

Powers of 3
Basis:

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

1 ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:
Recursive: if , then

Powers of 3
Basis:
Recursive: if , then

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

1 ∈ S

x ∈ S 3x ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:
Recursive: if , then

Powers of 3
Basis:
Recursive: if , then

Fibonacci numbers

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

1 ∈ S

x ∈ S 3x ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:
Recursive: if , then

Powers of 3
Basis:
Recursive: if , then

Fibonacci numbers
Basis:

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

1 ∈ S

x ∈ S 3x ∈ S

(0, 0) ∈ S, (1, 1) ∈ S

14

Examples of recursively defined setsExamples of recursively defined sets

Natural numbers
Basis:
Recursive: if , then

Even natural numbers
Basis:
Recursive: if , then

Powers of 3
Basis:
Recursive: if , then

Fibonacci numbers
Basis:
Recursive: if and , then

0 ∈ S

n ∈ S n + 1 ∈ S

0 ∈ S

x ∈ S x + 2 ∈ S

1 ∈ S

x ∈ S 3x ∈ S

(0, 0) ∈ S, (1, 1) ∈ S

(n − 1, x) ∈ S (n − 2, y) ∈ S (n, x + y) ∈ S

14

More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet is any finite set of characters.
The set of strings over the alphabet is defined as follows.
Basis: , where is the empty string.
Recursive: if and , then

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

15

More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet is any finite set of characters.
The set of strings over the alphabet is defined as follows.
Basis: , where is the empty string.
Recursive: if and , then

Palindromes (strings that are the same forwards and backwards)

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

15

More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet is any finite set of characters.
The set of strings over the alphabet is defined as follows.
Basis: , where is the empty string.
Recursive: if and , then

Palindromes (strings that are the same forwards and backwards)
Basis: and for every

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

ε ∈ S a ∈ S a ∈ Σ

15

More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet is any finite set of characters.
The set of strings over the alphabet is defined as follows.
Basis: , where is the empty string.
Recursive: if and , then

Palindromes (strings that are the same forwards and backwards)
Basis: and for every
Recursive: if , then for every

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

ε ∈ S a ∈ S a ∈ Σ

p ∈ S apa ∈ S a ∈ Σ

15

More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet is any finite set of characters.
The set of strings over the alphabet is defined as follows.
Basis: , where is the empty string.
Recursive: if and , then

Palindromes (strings that are the same forwards and backwards)
Basis: and for every
Recursive: if , then for every

All binary strings with no 1’s before 0’s

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

ε ∈ S a ∈ S a ∈ Σ

p ∈ S apa ∈ S a ∈ Σ

15

More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet is any finite set of characters.
The set of strings over the alphabet is defined as follows.
Basis: , where is the empty string.
Recursive: if and , then

Palindromes (strings that are the same forwards and backwards)
Basis: and for every
Recursive: if , then for every

All binary strings with no 1’s before 0’s
Basis:

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

ε ∈ S a ∈ S a ∈ Σ

p ∈ S apa ∈ S a ∈ Σ

ε ∈ S

15

More examples of recursively defined setsMore examples of recursively defined sets

Strings
An alphabet is any finite set of characters.
The set of strings over the alphabet is defined as follows.
Basis: , where is the empty string.
Recursive: if and , then

Palindromes (strings that are the same forwards and backwards)
Basis: and for every
Recursive: if , then for every

All binary strings with no 1’s before 0’s
Basis:
Recursive: if , then and

Σ

Σ
∗

Σ

ε ∈ Σ
∗

ε

w ∈ Σ
∗ a ∈ Σ wa ∈ Σ

∗

ε ∈ S a ∈ S a ∈ Σ

p ∈ S apa ∈ S a ∈ Σ

ε ∈ S

x ∈ S 0x ∈ S x1 ∈ S

15

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,
Concatenation

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,
Concatenation

 for

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

x ∙ ε = x x ∈ Σ
∗

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,
Concatenation

 for
 for ,

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

x ∙ ε = x x ∈ Σ
∗

x ∙ (wa) = (x ∙ w)a x, w ∈ Σ
∗ a ∈ Σ

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,
Concatenation

 for
 for ,

Number of ’s in a string

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

x ∙ ε = x x ∈ Σ
∗

x ∙ (wa) = (x ∙ w)a x, w ∈ Σ
∗ a ∈ Σ

c

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,
Concatenation

 for
 for ,

Number of ’s in a string
#

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

x ∙ ε = x x ∈ Σ
∗

x ∙ (wa) = (x ∙ w)a x, w ∈ Σ
∗ a ∈ Σ

c

(ε) = 0c

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,
Concatenation

 for
 for ,

Number of ’s in a string
#
for

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

x ∙ ε = x x ∈ Σ
∗

x ∙ (wa) = (x ∙ w)a x, w ∈ Σ
∗ a ∈ Σ

c

(ε) = 0c

(wc) =c (w) + 1c w ∈ Σ
∗

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Functions on recursively defined setsFunctions on recursively defined sets

Length

 for ,
Reversal

 for ,
Concatenation

 for
 for ,

Number of ’s in a string
#
for
for , ,

𝗅𝖾𝗇(ε) = 0

𝗅𝖾𝗇(wa) = 𝗅𝖾𝗇(w) + 1 w ∈ Σ
∗ a ∈ Σ

= εε
𝖱

(wa = a)𝖱 w𝖱 w ∈ Σ
∗ a ∈ Σ

x ∙ ε = x x ∈ Σ
∗

x ∙ (wa) = (x ∙ w)a x, w ∈ Σ
∗ a ∈ Σ

c

(ε) = 0c

(wc) =c (w) + 1c w ∈ Σ
∗

(wa) =c (w)c w ∈ Σ
∗ a ∈ Σ a ≠ c

Define by
Basis: , where is the
empty string.
Recursive: if and

, then

Σ
∗

ε ∈ Σ
∗

ε

w ∈ Σ
∗

a ∈ Σ wa ∈ Σ
∗

16

Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis:
Recursive: if and , then

L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

17

Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis:
Recursive: if and , then

Size of a rooted binary tree

L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

17

Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis:
Recursive: if and , then

Size of a rooted binary tree

L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

17

Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis:
Recursive: if and , then

Size of a rooted binary tree

L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| = 1 + |L| + |R|

17

Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis:
Recursive: if and , then

Size of a rooted binary tree

Height of a rooted binary tree L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| = 1 + |L| + |R|

17

Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis:
Recursive: if and , then

Size of a rooted binary tree

Height of a rooted binary tree L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| = 1 + |L| + |R|

⌈∙⌉ = 0

17

Rooted binary trees and functions on themRooted binary trees and functions on them

Rooted binary trees
Basis:
Recursive: if and , then

Size of a rooted binary tree

Height of a rooted binary tree L R

∙ ∈ S

L ∈ S R ∈ S 𝖳𝗋𝖾𝖾(∙, L, R) ∈ S

| ∙ | = 1

|𝖳𝗋𝖾𝖾(∙, L, R)| = 1 + |L| + |R|

⌈∙⌉ = 0

⌈𝖳𝗋𝖾𝖾(∙, L, R)⌉ = 1 + max(⌈L⌉, ⌈R⌉)

17

Structural inductionStructural induction
A method for proving properties of recursive structures.

18

How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that is a recursively defined set.
And we want to prove that every element of satisfies a predicate .

Can we use ordinary induction to prove ?

S

S P

∀x ∈ S. P(x)

19

How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that is a recursively defined set.
And we want to prove that every element of satisfies a predicate .

Can we use ordinary induction to prove ?
Yes! Define to be “for all that can be constructed in at most
recursive steps, is true.”

S

S P

∀x ∈ S. P(x)

Q(n) x ∈ S n

P(x)

19

How can we prove properties of recursive structures?How can we prove properties of recursive structures?

Suppose that is a recursively defined set.
And we want to prove that every element of satisfies a predicate .

Can we use ordinary induction to prove ?
Yes! Define to be “for all that can be constructed in at most
recursive steps, is true.”

S

S P

∀x ∈ S. P(x)

Q(n) x ∈ S n

P(x)

But this proof would be long and cumbersome to do!
So we use structural induction instead.

Follows from ordinary induction (on), while providing a more convenient
proof template for reasoning about recursive structures.
As powerful as ordinary induction, which is just structural induction applied
to the recursively defined set of natural numbers.

Q

19

Proving Proving by structural induction by structural induction

① Let be [definition of].
We will show that is true for every by structural
induction.

② Base cases:
[Proof of .]

③ Inductive hypothesis:
Assume that are true for some arbitrary

.
④ Inductive step:

We want to prove that is true.
[Proof of . The proof must invoke the structural
inductive hypothesis.]

⑤ The result follows for all by structural induction.

∀∀xx ∈∈ SS.. PP((xx))

P(x) P(x)

P(x) x ∈ S

P(), … , P()s0 sm

P(), … , P()y0 yk

, … , ∈ Sy0 yk

P(y)

P(y)

x ∈ S

Recursive definition of
Basis step:

.
Recursive step:
if , then

.

S

∈ S, … , ∈ Ss0 sm

, … , ∈ Sy0 yk

y ∈ S

20

Proving Proving by structural induction by structural induction

① Let be [definition of].
We will show that is true for every by structural
induction.

② Base cases:
[Proof of .]

③ Inductive hypothesis:
Assume that are true for some arbitrary

.
④ Inductive step:

We want to prove that is true.
[Proof of . The proof must invoke the structural
inductive hypothesis.]

⑤ The result follows for all by structural induction.

∀∀xx ∈∈ SS.. PP((xx))

P(x) P(x)

P(x) x ∈ S

P(), … , P()s0 sm

P(), … , P()y0 yk

, … , ∈ Sy0 yk

P(y)

P(y)

x ∈ S

Recursive definition of
Basis step:

.
Recursive step:
if , then

.

S

∈ S, … , ∈ Ss0 sm

, … , ∈ Sy0 yk

y ∈ S

If the recursive step of
includes multiple rules for
constructing new elements
from existing elements, then
③ assume for the existing
elements in every rule, and
④ prove for the new
element in every rule.

S

P

P

20

SummarySummary
To define a function recursively, specify its base case(s) and recursive case.

Use (strong) induction to prove theorems about recursive functions.
To define a set recursively, specify its basis and recursive step.

Recursive set definitions assume the exclusion rule.
We use recursive functions to operate on elements of recursive sets.

Use structural induction to prove properties of recursive structures.
Structural induction follows from ordinary induction but is easier to use.

21

