

CSE 311 Lecture 16: Induction

Emina Torlak and Sami Davies

Topics

Mathematical induction

A brief review of Lecture 15.

Example proofs by induction

Example proofs about sums and divisibility.

Induction starting at any integer

Proving theorems about all integers $n \ge b$ for some $b \in \mathbb{Z}$.

Induction with a stricter hypothesis

Proving theorems by induction on a stricter hypothesis.

Mathematical induction

A brief review of Lecture 15.

What is induction?

Induction
$$\frac{P(0); \forall k. P(k) \rightarrow P(k+1)}{\therefore \forall n. P(n)}$$

Domain: natural numbers (\mathbb{N}).

Induction is a logical rule of inference that applies (only) over \mathbb{N} .

If we know that a property P holds for 0, and we know that $\forall k. P(k) \rightarrow P(k + 1)$, then we can conclude that P holds for all natural numbers.

Induction: how does it work?

Induction
$$\frac{P(0); \forall k. P(k) \rightarrow P(k+1)}{\therefore \forall n. P(n)}$$

Domain: natural numbers (ℕ).

How do we get P(5) from P(0) and $\forall k. P(k) \rightarrow P(k+1)$?

- 1. First, we have P(0).
- 2. Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(0) \rightarrow P(1)$.
- 3. Applying Modus Ponens to 1 and 2, we get P(1).
- 4. Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(1) \rightarrow P(2)$. $\bigvee P(1) \rightarrow P(2)$.
- 5. Applying Modus Ponens to 3 and 4, we get P(2).

11. Applying Modus Ponens to 9 and 10, we get P(5).

P(0) $\downarrow P(0) \rightarrow P(1)$ P(1) $\downarrow P(1) \rightarrow P(2)$ P(2) $\downarrow P(k) \rightarrow P(k+1)$ P(5)

Using the induction rule in a formal proof: key parts

Induction
$$\frac{P(0); \forall k. P(k) \rightarrow P(k+1)}{\therefore \forall n. P(n)}$$

1.	1. Prove $P(0)$		
	2. Let $k \ge 0$	be an arbitrary integer	Inductive
	3.1. Assume that $P(k)$ is true		hypothesis
	3.2		Inductive
3.3. Prove $P(k + 1)$ is true			step
4.	$P(k) \rightarrow P(k+1)$	Direct Proof Rule	Conclusion
5.	$\forall k. P(k) \rightarrow P(k+1)$	Intro ∀: 2, 4	
6.	$\forall n. P(n)$	Induction: 1, 5	

Translating to an English proof: the template

① Let P(n) be [definition of P(n)].

We will show that P(n) is true for every integer $n \ge 0$ by induction.

2 Base case (n = 0):

[Proof of P(0).]

3 Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

④ Inductive step:

We want to prove that P(k + 1) is true. [Proof of P(k + 1). This proof **must** invoke the inductive hypothesis somewhere.]

(5) The result follows for all $n \ge 0$ by induction.

1. Prove $P(0)$	Base case			
2. Let $k \ge 0$ be an a	rbitrary integer	Inductive		
3.1. Assume that	P(k) is true	hypothesis		
3.2		Inductive		
3.3. Prove $P(k + 1)$ is tr	step			
4. $P(k) \rightarrow P(k+1)$ 5. $\forall k. P(k) \rightarrow P(k+1)$ 6. $\forall n. P(n)$	Direct Proof Rule Intro∀: 2, 4 Induction: 1, 5	Conclusion		

Example proofs by induction

Example proofs about sums and divisibility.

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$
 for all $n \in \mathbb{N}$

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$
 for all $n \in \mathbb{N}$

(1) Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + ... + n = n(n+1)/2$. We will show that P(n) is true for every integer $n \ge 0$ by induction.

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$
 for all $n \in \mathbb{N}$

(1) Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + ... + n = n(n+1)/2$. We will show that P(n) is true for every integer $n \ge 0$ by induction.

2 Base case (n = 0): $\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2$ so P(0) is true.

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$
 for all $n \in \mathbb{N}$

(1) Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + \dots + n = n(n+1)/2$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

(2) Base case (
$$n = 0$$
):
 $\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2$ so $P(0)$ is true

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$
 for all $n \in \mathbb{N}$

(1) Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n+1)/2$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

(2) Base case (n = 0): $\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2$ so P(0) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e., $\sum_{i=0}^{k+1} i = (k + 1)(k + 2)/2$. Note that $\sum_{i=0}^{k+1} i = (\sum_{i=0}^{k} i) + (k + 1) = (k(k + 1)/2) + (k + 1)$ by the inductive hypothesis. From this, we have that (k(k + 1)/2) + (k + 1) = (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2, which is exactly P(k + 1).

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$
 for all $n \in \mathbb{N}$

1 Let
$$P(n)$$
 be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n+1)/2$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

- ② Base case (n = 0): $\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2$ so P(0) is true.
- **③** Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e., $\sum_{i=0}^{k+1} i = (k + 1)(k + 2)/2$. Note that $\sum_{i=0}^{k+1} i = (\sum_{i=0}^{k} i) + (k + 1) = (k(k + 1)/2) + (k + 1)$ by the inductive hypothesis. From this, we have that (k(k + 1)/2) + (k + 1) = (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2, which is exactly P(k + 1).

(5) The result follows for all $n \ge 0$ by induction.

What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

Let's look at a few examples:

$$2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$$

$$2^{2*1} - 1 = 4 - 1 = 3 = 3 * 1$$

$$2^{2*2} - 1 = 16 - 1 = 15 = 3 * 5$$

$$2^{2*3} - 1 = 64 - 1 = 63 = 3 * 21$$

$$2^{2*4} - 1 = 256 - 1 = 255 = 3 * 85$$

What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

Let's look at a few examples:

$$2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$$

$$2^{2*1} - 1 = 4 - 1 = 3 = 3 * 1$$

$$2^{2*2} - 1 = 16 - 1 = 15 = 3 * 5$$

$$2^{2*3} - 1 = 64 - 1 = 63 = 3 * 21$$

$$2^{2*4} - 1 = 256 - 1 = 255 = 3 * 85$$

It looks like $3|(2^{2n} - 1)$.

Let's use induction to prove it!

Prove
$$3|(2^{2n}-1)$$
 for all $n \in \mathbb{N}$

(1) Let
$$P(n)$$
 be $3|(2^{2n} - 1)$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

1 Let P(n) be $3|(2^{2n} - 1)$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

(2) Base case (n = 0):

 $2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$ so P(0) is true.

① Let P(n) be $3|(2^{2n} - 1)$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

(2) Base case (n = 0): $2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$ so P(0) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

1 Let P(n) be $3|(2^{2n} - 1)$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

(2) Base case (n = 0):

 $2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$ so P(0) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e., $3|(2^{2(k+1)} - 1)$. By inductive hypothesis, $3|(2^{2k} - 1) \operatorname{so} 2^{2k} - 1 = 3j$ for some integer j. We therefore have that $2^{2(k+1)} - 1$ $= 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j + 1) - 1 = 12j + 3 = 3(4j + 1)$. So $3|(2^{2(k+1)} - 1)$, which is exactly P(k + 1).

1 Let P(n) be $3|(2^{2n} - 1)$.

We will show that P(n) is true for every integer $n \ge 0$ by induction.

(2) Base case (n = 0):

 $2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$ so P(0) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e., $3|(2^{2(k+1)} - 1)$. By inductive hypothesis, $3|(2^{2k} - 1) \operatorname{so} 2^{2k} - 1 = 3j$ for some integer j. We therefore have that $2^{2(k+1)} - 1$ $= 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j + 1) - 1 = 12j + 3 = 3(4j + 1)$. So $3|(2^{2(k+1)} - 1)$, which is exactly P(k + 1).

(5) The result follows for all $n \ge 0$ by induction.

Induction starting at any integer

Proving theorems about all integers $n \ge b$ for some $b \in \mathbb{Z}$.

How can we prove P(n) for all integers $n \ge b$ for some integer b?

How can we prove P(n) for all integers $n \ge b$ for some integer b?

Define a predicate Q(n) = P(n + b) for all $n \ge 0$. Then $(\forall n. Q(n)) \equiv (\forall n \ge b. P(n))$

How can we prove P(n) for all integers $n \ge b$ for some integer b?

Define a predicate Q(n) = P(n + b) for all $n \ge 0$. Then $(\forall n. Q(n)) \equiv (\forall n \ge b. P(n))$

Use ordinary induction to prove *Q*:

Prove $Q(0) \equiv P(b)$. Prove $(\forall k. Q(k) \rightarrow Q(k+1)) \equiv (\forall k \ge b. P(k) \rightarrow P(k+1))$.

How can we prove P(n) for all integers $n \ge b$ for some integer b?

Define a predicate Q(n) = P(n + b) for all $n \ge 0$. Then $(\forall n. Q(n)) \equiv (\forall n \ge b. P(n))$

Use ordinary induction to prove *Q*:

Prove $Q(0) \equiv P(b)$. Prove $(\forall k. Q(k) \rightarrow Q(k+1)) \equiv (\forall k \ge b. P(k) \rightarrow P(k+1))$.

By convention, we don't define Q explicitly. Instead, we modify our proof template to account for the non-zero base case b.

Inductive proofs for any base case $b \in \mathbb{Z}$

① Let P(n) be [definition of P(n)].

We will show that P(n) is true for every integer $n \ge b$ by induction.

- (2) Base case (n = b): [Proof of P(b).]
- ③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge b$.

④ Inductive step:

We want to prove that P(k + 1) is true.

[Proof of P(k + 1). This proof **must** invoke the inductive hypothesis.]

(5) The result follows for all $n \ge b$ by induction.

(1) Let P(n) be $3^n \ge n^2 + 3$.

We will show that P(n) is true for every integer $n \ge 2$ by induction.

(1) Let P(n) be $3^n \ge n^2 + 3$.

We will show that P(n) is true for every integer $n \ge 2$ by induction.

(2) Base case (n = 2):

 $3^2 = 9 \ge 7 = 4 + 3 = 2^2 + 3$ so P(2) is true.

(1) Let P(n) be $3^n \ge n^2 + 3$.

We will show that P(n) is true for every integer $n \ge 2$ by induction.

(2) Base case (n = 2):

 $3^2 = 9 \ge 7 = 4 + 3 = 2^2 + 3$ so P(2) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 2$.

(1) Let P(n) be $3^n \ge n^2 + 3$.

We will show that P(n) is true for every integer $n \ge 2$ by induction.

(2) Base case (n = 2):

 $3^2 = 9 \ge 7 = 4 + 3 = 2^2 + 3$ so P(2) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 2$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e., $3^{(k+1)} \ge (k + 1)^2 + 3 = k^2 + 2k + 4$. Note that $3^{(k+1)} = 3(3^k) \ge 3(k^2 + 3)$ by the inductive hypothesis. From this we have $3(k^2 + 3) = 2k^2 + k^2 + 9 \ge k^2 + 2k + 4 = (k + 1)^2 + 3$ since $k \ge 2$. Therefore P(k + 1) is true.

(1) Let P(n) be $3^n \ge n^2 + 3$.

We will show that P(n) is true for every integer $n \ge 2$ by induction.

(2) Base case (n = 2):

 $3^2 = 9 \ge 7 = 4 + 3 = 2^2 + 3$ so P(2) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 2$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e., $3^{(k+1)} \ge (k + 1)^2 + 3 = k^2 + 2k + 4$. Note that $3^{(k+1)} = 3(3^k) \ge 3(k^2 + 3)$ by the inductive hypothesis. From this we have $3(k^2 + 3) = 2k^2 + k^2 + 9 \ge k^2 + 2k + 4 = (k + 1)^2 + 3$ since $k \ge 2$. Therefore P(k + 1) is true.

(5) The result follows for all $n \ge 2$ by induction.

Induction with a stricter hypothesis

Proving theorems by induction on a stricter hypothesis.

Can we use induction to prove P(n) if we can't show that $P(k) \rightarrow P(k + 1)$ in the inductive step?

Can we use induction to prove P(n) if we can't show that $P(k) \rightarrow P(k + 1)$ in the inductive step?

Usually, but it requires a creative leap!

Can we use induction to prove P(n) if we can't show that $P(k) \rightarrow P(k + 1)$ in the inductive step?

Usually, but it requires a creative leap!

Find a predicate Q(n) such that

 $Q(n) \rightarrow P(n), Q(0), \text{ and } Q(k) \rightarrow Q(k+1).$

Can we use induction to prove P(n) if we can't show that $P(k) \rightarrow P(k + 1)$ in the inductive step?

Usually, but it requires a creative leap!

Find a predicate Q(n) such that

 $Q(n) \rightarrow P(n), Q(0), \text{ and } Q(k) \rightarrow Q(k+1).$

Then, we can prove Q(n) by induction and get P(n) by MP. We call this using a stricter (or stronger) hypothesis.

(1) Let P(n) be $\sum_{i=1}^{n} 1/i^2 < 2$.

We will try to show that P(n) is true for every integer $n \ge 1$ by induction.

(1) Let P(n) be $\sum_{i=1}^{n} 1/i^2 < 2$.

We will try to show that P(n) is true for every integer $n \ge 1$ by induction.

(2) Base case (n = 1):

 $\sum_{i=1}^{1} 1/i^2 = 1/1^2 = 1 < 2 \text{ so } P(1) \text{ is true.}$

(1) Let P(n) be $\sum_{i=1}^{n} 1/i^2 < 2$.

We will try to show that P(n) is true for every integer $n \ge 1$ by induction.

② Base case (n = 1): $\sum_{i=1}^{1} 1/i^2 = 1/1^2 = 1 < 2$ so P(1) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 1$.

(1) Let P(n) be $\sum_{i=1}^{n} 1/i^2 < 2$.

We will try to show that P(n) is true for every integer $n \ge 1$ by induction.

② Base case (n = 1): $\sum_{i=1}^{1} 1/i^2 = 1/1^2 = 1 < 2$ so P(1) is true.

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 1$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e, $\sum_{i=1}^{k+1} 1/i^2 < 2$. Note that $\sum_{i=1}^{k+1} 1/i^2 = \sum_{i=1}^{k} 1/i^2 + 1/(k + 1)^2$. By the inductive hypothesis, we know that $\sum_{i=1}^{k} 1/i^2 < 2$, and from this we can conclude that $\sum_{i=1}^{k} 1/i^2 + 1/(k + 1)^2 < 2 + 1/(k + 1)^2$. But this is not P(k + 1)!

(1) Let P(n) be $\sum_{i=1}^{n} 1/i^2 < 2$.

We will try to show that P(n) is true for every integer $n \ge 1$ by induction.

2 Base case (
$$n = 1$$
):
 $\sum_{i=1}^{1} 1/i^2 = 1/1^2 = 1 < 2$ so $P(1)$ is true

③ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer $k \ge 1$.

④ Inductive step:

We want to prove that P(k + 1) is true, i.e, $\sum_{i=1}^{k+1} 1/i^2 < 2$. Note that $\sum_{i=1}^{k+1} 1/i^2 = \sum_{i=1}^{k} 1/i^2 + 1/(k + 1)^2$. By the inductive hypothesis, we know that $\sum_{i=1}^{k} 1/i^2 < 2$, and from this we can conclude that $\sum_{i=1}^{k} 1/i^2 + 1/(k + 1)^2 < 2 + 1/(k + 1)^2$. But this is not P(k + 1)!

We need a stricter hypothesis! Let's try $Q(n) := \sum_{i=1}^{n} 1/i^2 \le 2 - 1/n$, noting that $Q(n) \to P(n)$ for all $n \ge 1$.

(1) Let Q(n) be $\sum_{i=1}^{n} 1/i^2 \le 2 - 1/n$.

We will show that Q(n) is true for every integer $n \ge 1$ by induction.

 ① Let Q(n) be ∑_{i=1}ⁿ 1/i² ≤ 2 - 1/n. We will show that Q(n) is true for every integer n ≥ 1 by induction.
 ② Base case (n = 1): ∑_{i=1}¹ 1/i² = 1/1² = 1 ≤ 2 - 1/1 = 1 so Q(1) is true.

(1) Let Q(n) be $\sum_{i=1}^{n} 1/i^2 \le 2 - 1/n$. We will show that Q(n) is true for every integer $n \ge 1$ by induction. (2) Base case (n = 1): $\sum_{i=1}^{1} 1/i^2 = 1/1^2 = 1 \le 2 - 1/1 = 1$ so Q(1) is true.

③ Inductive hypothesis:

Suppose that Q(k) is true for an arbitrary integer $k \ge 1$.

(1) Let Q(n) be $\sum_{i=1}^{n} 1/i^2 \le 2 - 1/n$.

We will show that Q(n) is true for every integer $n \ge 1$ by induction.

(2) Base case (n = 1):

$$\sum_{i=1}^{1} 1/i^2 = 1/1^2 = 1 \le 2 - 1/1 = 1$$
 so $Q(1)$ is true.

③ Inductive hypothesis:

Suppose that Q(k) is true for an arbitrary integer $k \ge 1$.

④ Inductive step:

We want to prove that Q(k + 1) is true, i.e, $\sum_{i=1}^{k+1} 1/i^2 \le 2 - 1/(k + 1)$. Note that $\sum_{i=1}^{k+1} 1/i^2 = \sum_{i=1}^k 1/i^2 + 1/(k + 1)^2$. By the inductive hypothesis, we know that $\sum_{i=1}^k 1/i^2 \le 2 - 1/k$. Adding $1/(k + 1)^2$ to both sides, we get $\sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{(k+1)^2} = 2 - \frac{(k+1)^2 - k}{k(k+1)^2} = 2 - \frac{k^2 + k + 1}{k(k+1)^2} = 2 - \frac{k(k+1) + 1}{k(k+1)^2}$. Note that $\frac{k(k+1)}{k(k+1)^2} < \frac{k(k+1) + 1}{k(k+1)^2}$ when $k \ge 1$, so $\sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k(k+1) + 1}{k(k+1)^2} < 2 - \frac{k(k+1)}{k(k+1)^2} = 2 - \frac{k(k+1)}{k(k+1)^2} = 2 - \frac{k(k+1)}{k(k+1)^2}$. This shows that Q(k + 1) holds.

(1) Let
$$Q(n)$$
 be $\sum_{i=1}^{n} 1/i^2 \le 2 - 1/n$.

We will show that Q(n) is true for every integer $n \ge 1$ by induction.

(2) Base case (n = 1):

$$\sum_{i=1}^{1} 1/i^2 = 1/1^2 = 1 \le 2 - 1/1 = 1$$
 so $Q(1)$ is true.

③ Inductive hypothesis:

Suppose that Q(k) is true for an arbitrary integer $k \ge 1$.

④ Inductive step:

We want to prove that Q(k + 1) is true, i.e, $\sum_{i=1}^{k+1} 1/i^2 \le 2 - 1/(k + 1)$. Note that $\sum_{i=1}^{k+1} 1/i^2 = \sum_{i=1}^k 1/i^2 + 1/(k + 1)^2$. By the inductive hypothesis, we know that $\sum_{i=1}^k 1/i^2 \le 2 - 1/k$. Adding $1/(k + 1)^2$ to both sides, we get $\sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{(k+1)^2} = 2 - \frac{(k+1)^2 - k}{k(k+1)^2} = 2 - \frac{k^2 + k + 1}{k(k+1)^2} = 2 - \frac{k(k+1) + 1}{k(k+1)^2}$. Note that $\frac{k(k+1)}{k(k+1)^2} < \frac{k(k+1) + 1}{k(k+1)^2}$ when $k \ge 1$, so $\sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} \le 2 - \frac{k(k+1) + 1}{k(k+1)^2} < 2 - \frac{k(k+1)}{k(k+1)^2} = 2 - \frac{k(k+1) + 1}{k(k+1)^2}$. This shows that Q(k + 1) holds.

(5) The result follows for all $n \ge 1$ by induction.

Summary

Induction lets us prove statements about all natural numbers.

A proof by induction must show that P(0) is true (*base case*). And it must use the *inductive hypothesis* P(k) to show that P(k + 1) is true (*inductive step*).

Induction also lets us prove theorems about integers $n \ge b$ for $b \in \mathbb{Z}$. Adjust all parts of the proof to use $n \ge b$ instead of $n \ge 0$.

Induction proofs can use a hypothesis that implies P(k).

It is not always possible to use P(k) as the induction hypothesis. In those cases, we use induction to prove Q(n), where $Q(n) \rightarrow P(n)$.