CSE 311 Lecture 16: Induction

Emina Torlak and Sami Davies

Topics

Mathematical induction

A brief review of Lecture 15.
Example proofs by induction
Example proofs about sums and divisibility.
Induction starting at any integer
Proving theorems about all integers $n \geq b$ for some $b \in \mathbb{Z}$.
Induction with a stricter hypothesis
Proving theorems by induction on a stricter hypothesis.

Mathematical induction

A brief review of Lecture 15.

What is induction?

Induction $\frac{P(0) ; \forall k \cdot P(k) \rightarrow P(k+1)}{\therefore \forall n \cdot P(n)}$
Domain: natural numbers (\mathbb{N}).

Induction is a logical rule of inference that applies (only) over \mathbb{N}.
If we know that a property P holds for 0 , and we know that $\forall k . P(k) \rightarrow P(k+1)$, then
we can conclude that P holds for all natural numbers.

Induction: how does it work?

$$
\text { Induction } \frac{P(0) ; \forall k \cdot P(k) \rightarrow P(k+1)}{\therefore \forall n \cdot P(n)}
$$

Domain: natural numbers (\mathbb{N}).

How do we get $P(5)$ from $P(0)$ and $\forall k . P(k) \rightarrow P(k+1)$?

1. First, we have $P(0)$.
2. Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(0) \rightarrow P(1)$.
```
P(0)
    | |(0)->P(1)
P(1)
    | }\mp@subsup{|}{(1)->P(2)}{
P(2)
    |P(k)->P(k+1)
    P(5)
```


Using the induction rule in a formal proof: key parts

Induction $\frac{P(0) ; \forall k . P(k) \rightarrow P(k+1)}{\therefore \forall n . P(n)}$	
1. Prove $P(0)$ Base case 2. Let $k \geq 0$ be an arbitrary integer Inductive 3.1. Assume that $P(k)$ is true hypothesis 3.2. \ldots Inductive 3.3. Prove $P(k+1)$ is true step 4. $P(k) \rightarrow P(k+1)$ Direct Proof Rule 5. $\forall k . P(k) \rightarrow P(k+1)$ Intro $\forall: 2,4$	
6. $\forall n \cdot P(n)$	Induction:1,5

Translating to an English proof: the template

(1) Let $P(n)$ be [definition of $P(n)$].

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:
[Proof of $P(0)$.]
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true. [Proof of $P(k+1)$. This proof must invoke the inductive hypothesis somewhere.]
(5) The result follows for all $n \geq 0$ by induction.

Base case

Inductive hypothesis

Inductive
step
Conclusion
4. $P(k) \rightarrow P(k+1) \quad$ Direct Proof Rule
5. $\forall k . P(k) \rightarrow P(k+1) \quad$ Intro $\forall: 2,4$
6. $\forall n . P(n) \quad$ Induction: 1,5

Example proofs by induction

Example proofs about sums and divisibility.

Prove $\sum_{i=0}^{n} i=n(n+1) / 2$ for all $n \in \mathbb{N}$

Prove $\sum_{i=0}^{n} i=n(n+1) / 2$ for all $n \in \mathbb{N}$
(1) Let $P(n)$ be $\sum_{i=0}^{n} i=0+1+\ldots+n=n(n+1) / 2$. We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

Prove $\sum_{i=0}^{n} i=n(n+1) / 2$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $\sum_{i=0}^{n} i=0+1+\ldots+n=n(n+1) / 2$. We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:

$$
\sum_{i=0}^{n} i=0=0(0+1) / 2 \text { so } P(0) \text { is true. }
$$

Prove $\sum_{i=0}^{n} i=n(n+1) / 2$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $\sum_{i=0}^{n} i=0+1+\ldots+n=n(n+1) / 2$. We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:
$\sum_{i=0}^{n} i=0=0(0+1) / 2$ so $P(0)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

Prove $\sum_{i=0}^{n} i=n(n+1) / 2$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $\sum_{i=0}^{n} i=0+1+\ldots+n=n(n+1) / 2$.

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:
$\sum_{i=0}^{n} i=0=0(0+1) / 2$ so $P(0)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e., $\sum_{i=0}^{k+1} i=(k+1)(k+2) / 2$. Note that $\sum_{i=0}^{k+1} i=\left(\sum_{i=0}^{k} i\right)+(k+1)=(k(k+1) / 2)+(k+1)$ by the inductive hypothesis. From this, we have that $(k(k+1) / 2)+(k+1)=(k+1)(k / 2+1)=$ $(k+1)(k+2) / 2$, which is exactly $P(k+1)$.

Prove $\sum_{i=0}^{n} i=n(n+1) / 2$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $\sum_{i=0}^{n} i=0+1+\ldots+n=n(n+1) / 2$.

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:
$\sum_{i=0}^{n} i=0=0(0+1) / 2$ so $P(0)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e., $\sum_{i=0}^{k+1} i=(k+1)(k+2) / 2$. Note that $\sum_{i=0}^{k+1} i=\left(\sum_{i=0}^{k} i\right)+(k+1)=(k(k+1) / 2)+(k+1)$ by the inductive hypothesis. From this, we have that $(k(k+1) / 2)+(k+1)=(k+1)(k / 2+1)=$ $(k+1)(k+2) / 2$, which is exactly $P(k+1)$.
(5) The result follows for all $n \geq 0$ by induction.

What number divides $2^{2 n}-1$ for every $n \in \mathbb{N}$?

What number divides $2^{2 n}-1$ for every $n \in \mathbb{N}$?

Let's look at a few examples:

$$
\begin{aligned}
& 2^{2 * 0}-1=1-1=0=3 * 0 \\
& 2^{2 * 1}-1=4-1=3=3 * 1 \\
& 2^{2 * 2}-1=16-1=15=3 * 5 \\
& 2^{2 * 3}-1=64-1=63=3 * 21 \\
& 2^{2 * 4}-1=256-1=255=3 * 85
\end{aligned}
$$

What number divides $2^{2 n}-1$ for every $n \in \mathbb{N}$?

Let's look at a few examples:

$$
\begin{aligned}
& 2^{2 * 0}-1=1-1=0=3 * 0 \\
& 2^{2 * 1}-1=4-1=3=3 * 1 \\
& 2^{2 * 2}-1=16-1=15=3 * 5 \\
& 2^{2 * 3}-1=64-1=63=3 * 21 \\
& 2^{2 * 4}-1=256-1=255=3 * 85
\end{aligned}
$$

It looks like $3 \mid\left(2^{2 n}-1\right)$.
Let's use induction to prove it!

Prove $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$

Prove $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $3 \mid\left(2^{2 n}-1\right)$. We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

Prove $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $3 \mid\left(2^{2 n}-1\right)$. We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:

$$
2^{2 * 0}-1=1-1=0=3 * 0 \text { so } P(0) \text { is true. }
$$

Prove $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $3 \mid\left(2^{2 n}-1\right)$.

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$: $2^{2 * 0}-1=1-1=0=3 * 0$ so $P(0)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

Prove $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $3 \mid\left(2^{2 n}-1\right)$.

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:
$2^{2 * 0}-1=1-1=0=3 * 0$ so $P(0)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e., $3 \mid\left(2^{2(k+1)}-1\right)$. By inductive hypothesis, $3 \mid\left(2^{2 k}-1\right)$ so $2^{2 k}-1=3 j$ for some integer j. We therefore have that $2^{2(k+1)}-1$ $=2^{2 k+2}-1=4\left(2^{2 k}\right)-1=4(3 j+1)-1=12 j+3=3(4 j+1)$. So $3 \mid\left(2^{2(k+1)}-1\right)$, which is exactly $P(k+1)$.

Prove $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$

(1) Let $P(n)$ be $3 \mid\left(2^{2 n}-1\right)$.

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
(2) Base case $(n=0)$:
$2^{2 * 0}-1=1-1=0=3 * 0$ so $P(0)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e., $3 \mid\left(2^{2(k+1)}-1\right)$. By inductive hypothesis, $3 \mid\left(2^{2 k}-1\right)$ so $2^{2 k}-1=3 j$ for some integer j. We therefore have that $2^{2(k+1)}-1$
$=2^{2 k+2}-1=4\left(2^{2 k}\right)-1=4(3 j+1)-1=12 j+3=3(4 j+1)$. So
$3 \mid\left(2^{2(k+1)}-1\right)$, which is exactly $P(k+1)$.
(5) The result follows for all $n \geq 0$ by induction.

Induction starting at any integer

Proving theorems about all integers $n \geq b$ for some $b \in \mathbb{Z}$.

Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b ?

Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b ?
Define a predicate $Q(n)=P(n+b)$ for all $n \geq 0$.
Then $(\forall n \cdot Q(n)) \equiv(\forall n \geq b . P(n))$

Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b ?
Define a predicate $Q(n)=P(n+b)$ for all $n \geq 0$.
Then $(\forall n . Q(n)) \equiv(\forall n \geq b . P(n))$
Use ordinary induction to prove Q :
Prove $Q(0) \equiv P(b)$.
Prove $(\forall k . Q(k) \rightarrow Q(k+1)) \equiv(\forall k \geq b . P(k) \rightarrow P(k+1))$.

Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b ?
Define a predicate $Q(n)=P(n+b)$ for all $n \geq 0$.
Then $(\forall n . Q(n)) \equiv(\forall n \geq b . P(n))$
Use ordinary induction to prove Q :
Prove $Q(0) \equiv P(b)$.
Prove $(\forall k . Q(k) \rightarrow Q(k+1)) \equiv(\forall k \geq b . P(k) \rightarrow P(k+1))$.
By convention, we don't define Q explicitly. Instead, we modify our proof template to account for the non-zero base case b.

Inductive proofs for any base case $b \in \mathbb{Z}$

(1) Let $P(n)$ be [definition of $P(n)$].

We will show that $P(n)$ is true for every integer $n \geq b$ by induction.
(2) Base case $(n=b)$:
[Proof of $P(b)$.]
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq b$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true.
[Proof of $P(k+1)$. This proof must invoke the inductive hypothesis.]
(5) The result follows for all $n \geq b$ by induction.

Example: prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

Example: prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

(1) Let $P(n)$ be $3^{n} \geq n^{2}+3$.

We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.

Example: prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

(1) Let $P(n)$ be $3^{n} \geq n^{2}+3$.

We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.
(2) Base case $(n=2)$:
$3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.

Example: prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

(1) Let $P(n)$ be $3^{n} \geq n^{2}+3$.

We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.
(2) Base case $(n=2)$:
$3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 2$.

Example: prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

(1) Let $P(n)$ be $3^{n} \geq n^{2}+3$.

We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.
(2) Base case $(n=2)$:
$3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 2$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e., $3^{(k+1)} \geq(k+1)^{2}+3=k^{2}+2 k+4$. Note that $3^{(k+1)}=3\left(3^{k}\right) \geq 3\left(k^{2}+3\right)$ by the inductive hypothesis. From this we have $3\left(k^{2}+3\right)=2 k^{2}+k^{2}+9 \geq k^{2}+2 k+4=(k+1)^{2}+3$ since $k \geq 2$. Therefore $P(k+1)$ is true.

Example: prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

(1) Let $P(n)$ be $3^{n} \geq n^{2}+3$.

We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.
(2) Base case $(n=2)$:
$3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 2$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e., $3^{(k+1)} \geq(k+1)^{2}+3=k^{2}+2 k+4$. Note that $3^{(k+1)}=3\left(3^{k}\right) \geq 3\left(k^{2}+3\right)$ by the inductive hypothesis. From this we have $3\left(k^{2}+3\right)=2 k^{2}+k^{2}+9 \geq k^{2}+2 k+4=(k+1)^{2}+3$ since $k \geq 2$. Therefore $P(k+1)$ is true.
(5) The result follows for all $n \geq 2$ by induction.

Induction with a stricter hypothesis

Proving theorems by induction on a stricter hypothesis.

Changing the hypothesis

Can we use induction to prove $P(n)$ if we can't show that $P(k) \rightarrow P(k+1)$ in the inductive step?

Changing the hypothesis

Can we use induction to prove $P(n)$ if we can't show that $P(k) \rightarrow P(k+1)$ in the inductive step?

Usually, but it requires a creative leap!

Changing the hypothesis

Can we use induction to prove $P(n)$ if we can't show that $P(k) \rightarrow P(k+1)$ in the inductive step?

Usually, but it requires a creative leap!
Find a predicate $Q(n)$ such that

$$
Q(n) \rightarrow P(n), Q(0), \text { and } Q(k) \rightarrow Q(k+1)
$$

Changing the hypothesis

Can we use induction to prove $P(n)$ if we can't show that $P(k) \rightarrow P(k+1)$ in the inductive step?

Usually, but it requires a creative leap!
Find a predicate $Q(n)$ such that

$$
Q(n) \rightarrow P(n), Q(0), \text { and } Q(k) \rightarrow Q(k+1) .
$$

Then, we can prove $Q(n)$ by induction and get $P(n)$ by MP.
We call this using a stricter (or stronger) hypothesis.

Example: prove $\sum_{i=1}^{n} 1 / i^{2}<2$ for all $n \geq 1$

Example: prove $\sum_{i=1}^{n} 1 / i^{2}<2$ for all $n \geq 1$

(1) Let $P(n)$ be $\sum_{i=1}^{n} 1 / i^{2}<2$.

We will try to show that $P(n)$ is true for every integer $n \geq 1$ by induction.

Example: prove $\sum_{i=1}^{n} 1 / i^{2}<2$ for all $n \geq 1$

(1) Let $P(n)$ be $\sum_{i=1}^{n} 1 / i^{2}<2$.

We will try to show that $P(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case $(n=1)$:

$$
\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1<2 \text { so } P(1) \text { is true. }
$$

Example: prove $\sum_{i=1}^{n} 1 / i^{2}<2$ for all $n \geq 1$

(1) Let $P(n)$ be $\sum_{i=1}^{n} 1 / i^{2}<2$.

We will try to show that $P(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case $(n=1)$:
$\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1<2$ so $P(1)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 1$.

Example: prove $\sum_{i=1}^{n} 1 / i^{2}<2$ for all $n \geq 1$

(1) Let $P(n)$ be $\sum_{i=1}^{n} 1 / i^{2}<2$.

We will try to show that $P(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case $(n=1)$:
$\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1<2$ so $P(1)$ is true.
(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 1$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e, $\sum_{i=1}^{k+1} 1 / i^{2}<2$. Note that $\sum_{i=1}^{k+1} 1 / i^{2}=\sum_{i=1}^{k} 1 / i^{2}+1 /(k+1)^{2}$. By the inductive hypothesis, we know that
$\sum_{i=1}^{k} 1 / i^{2}<2$, and from this we can conclude that
$\sum_{i=1}^{k} 1 / i^{2}+1 /(k+1)^{2}<2+1 /(k+1)^{2}$. But this is not $P(k+1)$!

Example: prove $\sum_{i=1}^{n} 1 / i^{2}<2$ for all $n \geq 1$

(1) Let $P(n)$ be $\sum_{i=1}^{n} 1 / i^{2}<2$.

We will try to show that $P(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case $(n=1)$:

$$
\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1<2 \text { so } P(1) \text { is true. }
$$

(3) Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 1$.
(4) Inductive step:

We want to prove that $P(k+1)$ is true, i.e, $\sum_{i=1}^{k+1} 1 / i^{2}<2$. Note that $\sum_{i=1}^{k+1} 1 / i^{2}=\sum_{i=1}^{k} 1 / i^{2}+1 /(k+1)^{2}$. By the inductive hypothesis, we know that
$\sum_{i=1}^{k} 1 / i^{2}<2$, and from this we can conclude that
$\sum_{i=1}^{k} 1 / i^{2}+1 /(k+1)^{2}<2+1 /(k+1)^{2}$. But this is not $P(k+1)$!
We need a stricter hypothesis! Let's try $Q(n):=\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$, noting that $Q(n) \rightarrow P(n)$ for all $n>=1$.

Prove instead $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$ for all $n \geq 1$

Prove instead $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$ for all $n \geq 1$

(1) Let $Q(n)$ be $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$.

We will show that $Q(n)$ is true for every integer $n \geq 1$ by induction.

Prove instead $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$ for all $n \geq 1$

(1) Let $Q(n)$ be $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$.

We will show that $Q(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case $(n=1)$:

$$
\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1 \leq 2-1 / 1=1 \text { so } Q(1) \text { is true. }
$$

Prove instead $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$ for all $n \geq 1$

(1) Let $Q(n)$ be $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$.

We will show that $Q(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case $(n=1)$:

$$
\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1 \leq 2-1 / 1=1 \text { so } Q(1) \text { is true. }
$$

(3) Inductive hypothesis:

Suppose that $Q(k)$ is true for an arbitrary integer $k \geq 1$.

Prove instead $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$ for all $n \geq 1$

(1) Let $Q(n)$ be $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$.

We will show that $Q(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case ($n=1$):
$\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1 \leq 2-1 / 1=1$ so $Q(1)$ is true.
(3) Inductive hypothesis:

Suppose that $Q(k)$ is true for an arbitrary integer $k \geq 1$.
(4) Inductive step:

We want to prove that $Q(k+1)$ is true, i.e, $\sum_{i=1}^{k+1} 1 / i^{2} \leq 2-1 /(k+1)$. Note that $\sum_{i=1}^{k+1} 1 / i^{2}=\sum_{i=1}^{k} 1 / i^{2}+1 /(k+1)^{2}$. By the inductive hypothesis, we know that
$\sum_{i=1}^{k} 1 / i^{2} \leq 2-1 / k$. Adding $1 /(k+1)^{2}$ to both sides, we get
$\sum_{i=1}^{k} \frac{1}{i^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}}=2-\frac{(k+1)^{2}-k}{k(k+1)^{2}}=2-\frac{k^{2}+k+1}{k(k+1)^{2}}=2-\frac{k(k+1)+1}{k(k+1)^{2}}$. Note that $\frac{k(k+1)}{k(k+1)^{2}}<\frac{k(k+1)+1}{k(k+1)^{2}}$ when $k \geq 1$, so $\sum_{i=1}^{k} \frac{1}{i^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{k(k+1)+1}{k(k+1)^{2}}<2-\frac{k(k+1)}{k(k+1)^{2}}$
$=2-\frac{k+1}{(k+1)^{2}}=2-\frac{1}{k+1}$. This shows that $Q(k+1)$ holds.

Prove instead $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$ for all $n \geq 1$

(1) Let $Q(n)$ be $\sum_{i=1}^{n} 1 / i^{2} \leq 2-1 / n$.

We will show that $Q(n)$ is true for every integer $n \geq 1$ by induction.
(2) Base case $(n=1)$:

$$
\sum_{i=1}^{1} 1 / i^{2}=1 / 1^{2}=1 \leq 2-1 / 1=1 \text { so } Q(1) \text { is true. }
$$

(3) Inductive hypothesis:

Suppose that $Q(k)$ is true for an arbitrary integer $k \geq 1$.
(4) Inductive step:

We want to prove that $Q(k+1)$ is true, i.e, $\sum_{i=1}^{k+1} 1 / i^{2} \leq 2-1 /(k+1)$. Note that $\sum_{i=1}^{k+1} 1 / i^{2}=\sum_{i=1}^{k} 1 / i^{2}+1 /(k+1)^{2}$. By the inductive hypothesis, we know that $\sum_{i=1}^{k} 1 / i^{2} \leq 2-1 / k$. Adding $1 /(k+1)^{2}$ to both sides, we get
$\sum_{i=1}^{k} \frac{1}{i^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}}=2-\frac{(k+1)^{2}-k}{k(k+1)^{2}}=2-\frac{k^{2}+k+1}{k(k+1)^{2}}=2-\frac{k(k+1)+1}{k(k+1)^{2}}$. Note that $\frac{k(k+1)}{k(k+1)^{2}}<\frac{k(k+1)+1}{k(k+1)^{2}}$ when $k \geq 1$, so $\sum_{i=1}^{k} \frac{1}{i^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{k(k+1)+1}{k(k+1)^{2}}<2-\frac{k(k+1)}{k(k+1)^{2}}$
$=2-\frac{k+1}{(k+1)^{2}}=2-\frac{1}{k+1}$. This shows that $Q(k+1)$ holds.
(5) The result follows for all $n \geq 1$ by induction.

Summary

Induction lets us prove statements about all natural numbers.
A proof by induction must show that $P(0)$ is true (base case).
And it must use the inductive hypothesis $P(k)$ to show that $P(k+1)$ is true (inductive step).
Induction also lets us prove theorems about integers $n \geq b$ for $b \in \mathbb{Z}$.
Adjust all parts of the proof to use $n \geq b$ instead of $n \geq 0$. Induction proofs can use a hypothesis that implies $P(k)$.

It is not always possible to use $P(k)$ as the induction hypothesis. In those cases, we use induction to prove $Q(n)$, where $Q(n) \rightarrow P(n)$.

