

CSE 311 Lecture 15: Modular Exponentiation and Induction

Emina Torlak and Sami Davies

Topics

Modular equations

A quick review of Lecture 14.

Modular exponentiation

A fast algorithm for computing $a^k \mod m$.

Mathematical induction

A method for proving statements about all natural numbers.

Using induction

Using induction in formal and English proofs.

Example proofs by induction

Example proofs about sums and divisibility.

Modular equations

A quick review of Lecture 14.

Bézout's theorem and multiplicative inverses

Bézout's theorem

If a and b are positive integers, then there exist integers s and t such that GCD(a, b) = sa + tb.

We can compute s and t using the extended Euclidean algorithm.

If GCD(a, m) = 1, then $s \mod m$ is the *multiplicative inverse* of $a \mod m$:

- sa + tm = 1 so $sa \equiv 1 \pmod{m}$, and we have
- $(s \mod m)a \equiv 1 \pmod m$.

These inverses let us solve modular equations.

Using multiplicative inverses to solve modular equations

Solve: $7x \equiv 1 \pmod{26}$

① Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

② Solve the equations for r in the tableau.

$$a = q * b + r$$

$$26 = 3 * 7 + 5$$

$$7 = 1 * 5 + 2$$

$$5 = 2 * 2 + 1$$

$$r = a - q * b$$

$$5 = 26 - 3 * 7$$

$$2 = 7 - 1 * 5$$

$$1 = 5 - 2 * 2$$

$$1 = 5 - 2 * (7 - 1 * 5)$$

$$= (-2) * 7 + 3 * 5$$

$$= (-2) * 7 + 3 * (26 - 3 * 7)$$

$$= 3 * 26 + (-11) * 7$$

- 4 Solve for x.
 - Multiplicative inverse of 7 mod 26

$$-(-11) \mod 26 = 15$$

• So,
$$x = 26k + 15$$
 for $k \in \mathbb{Z}$.

Modular exponentiation

A fast algorithm for computing $a^k \mod m$.

How would you compute $78365^{81453} \mod 104729$?

How would you compute $78365^{81453} \mod 104729$?

Naive approach

First compute 78365⁸¹⁴⁵³.

Then take the result modulo 104729.

How would you compute $78365^{81453} \mod 104729$?

Naive approach

First compute 78365⁸¹⁴⁵³.

Then take the result modulo 104729.

This works but is very inefficient ...

The intermediate result 78365^{81453} is a 1,324,257-bit number!

But we only need the remainder mod 104,729, which is 17 bits.

How would you compute $78365^{81453} \mod 104729$?

Naive approach

First compute 78365⁸¹⁴⁵³.

Then take the result modulo 104729.

This works but is very inefficient ...

The intermediate result 78365^{81453} is a 1,324,257-bit number! But we only need the remainder mod 104,729, which is 17 bits.

To keep the intermediate results small, we use fast modular exponentiation.

Repeated squaring: $a^k \mod m$ for $k = 2^i$

If $k = 2^i$, we can compute $a^k \mod m$ in just i steps.

Note that $a \mod m \equiv a \pmod m$ and $b \mod m \equiv b \pmod m$. So, we have $ab \mod m = ((a \mod m)(b \mod m)) \mod m$.

Repeated squaring: $a^k \mod m$ for $k = 2^i$

If $k = 2^i$, we can compute $a^k \mod m$ in just i steps.

Note that $a \mod m \equiv a \pmod m$ and $b \mod m \equiv b \pmod m$. So, we have $ab \mod m = ((a \mod m)(b \mod m)) \mod m$.

For example:

```
a^{2} \mod m = (a \mod m)^{2} \mod m
a^{4} \mod m = (a^{2} \mod m)^{2} \mod m
a^{8} \mod m = (a^{4} \mod m)^{2} \mod m
a^{16} \mod m = (a^{8} \mod m)^{2} \mod m
a^{32} \mod m = (a^{16} \mod m)^{2} \mod m
```

Repeated squaring: $a^k \mod m$ for $k = 2^i$

If $k = 2^i$, we can compute $a^k \mod m$ in just i steps.

Note that $a \mod m \equiv a \pmod m$ and $b \mod m \equiv b \pmod m$. So, we have $ab \mod m = ((a \mod m)(b \mod m)) \mod m$.

For example:

 $a^{2} \mod m = (a \mod m)^{2} \mod m$ $a^{4} \mod m = (a^{2} \mod m)^{2} \mod m$ $a^{8} \mod m = (a^{4} \mod m)^{2} \mod m$ $a^{16} \mod m = (a^{8} \mod m)^{2} \mod m$ $a^{32} \mod m = (a^{16} \mod m)^{2} \mod m$

What if k is not a power of 2? How do we solve $78365^{81453} \mod 104729$?

Fast exponentiation: $a^k \mod m$ for all k

Note that 81453 is 10011111000101101 in binary.

$$81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^5 + 2^3 + 2^2 + 2^0$$
$$a^{81453} = a^{2^{16}} * a^{2^{13}} * a^{2^{12}} * a^{2^{11}} * a^{2^{10}} * a^{2^9} * a^{2^5} * a^{2^3} * a^{2^2} * a^{2^0}$$

Fast exponentiation: $a^k \mod m$ for all k

Note that 81453 is 10011111000101101 in binary.

$$81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^{9} + 2^{5} + 2^{3} + 2^{2} + 2^{0}$$

$$a^{81453} = a^{2^{16}} * a^{2^{13}} * a^{2^{12}} * a^{2^{11}} * a^{2^{10}} * a^{2^{9}} * a^{2^{5}} * a^{2^{3}} * a^{2^{2}} * a^{2^{0}}$$

```
a^{81453} \mod m = (((((((((a^{2^{16}} \mod m * a^{2^{13}} \mod m) \mod m * a^{2^{12}} \mod m) \mod m * a^{2^{11}} \mod m) \mod m * a^{2^{10}} \mod m) \mod m * a^{2^{9}} \mod m) \mod m * a^{2^{5}} \mod m) \mod m * a^{2^{5}} \mod m) \mod m * a^{2^{9}} \mod m) \mod m * a^{2^{9}} \mod m) \mod m * a^{2^{0}} \mod m) \mod m * a^{2^{0}} \mod m) \mod m
```

Fast exponentiation: $a^k \mod m$ for all k

Note that 81453 is 10011111000101101 in binary.

$$81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^5 + 2^3 + 2^2 + 2^0$$

$$a^{81453} = a^{2^{16}} * a^{2^{13}} * a^{2^{12}} * a^{2^{11}} * a^{2^{10}} * a^{2^9} * a^{2^5} * a^{2^3} * a^{2^2} * a^{2^0}$$

```
a^{81453} \mod m = (((((((((a^{2^{16}} \mod m * a^{2^{13}} \mod m) \mod m * a^{2^{12}} \mod m) \mod m * a^{2^{11}} \mod m) \mod m * a^{2^{10}} \mod m) \mod m * a^{2^{9}} \mod m) \mod m * a^{2^{5}} \mod m) \mod m * a^{2^{5}} \mod m) \mod m * a^{2^{9}} \mod m) \mod m * a^{2^{0}} \mod m) \mod m * a^{2^{0}} \mod m) \mod m * a^{2^{0}} \mod m) \mod m
```

Fast exponentiation computes $a^k \mod m$ using $\leq 2 \log k$ multiplications $\mod m$.

The fast exponentiation algorithm

$$a^{2j} \mod m = (a^j \mod m)^2 \mod m$$

$$a^{2j+1} \mod m = ((a \mod m) * (a^{2j} \mod m)) \mod m$$

The fast exponentiation algorithm

```
a^{2j} \mod m = (a^j \mod m)^2 \mod m
a^{2j+1} \mod m = ((a \mod m) * (a^{2j} \mod m)) \mod m
```

Example implementation:

The fast exponentiation algorithm

```
a^{2j} \mod m = (a^j \mod m)^2 \mod m
a^{2j+1} \mod m = ((a \mod m) * (a^{2j} \mod m)) \mod m
```

Example implementation:

 $78365^{81453} \mod 104729 = 45235$

Using fast modular exponentiation: RSA encryption

Alice chooses random 512-bit (or 1024-bit) primes p, q and exponent e.

Alice computes m=pq and broadcasts (m,e), which is her public key. She also computes the multiplicative inverse d of $e \mod (p-1)(q-1)$, which serves as her private key.

To encrypt a message a with Alice's public key, Bob computes $C = a^e \mod m$.

This computation uses fast modular exponentiation.

Bob sends the ciphertext ${\it C}$ to Alice.

To decrypt C, Alice computes $C^d \mod m$.

This computation also uses fast modular exponentiation.

It works because $C^d \mod m = a$ for 0 < a < m unless p|a or q|a.

Mathematical induction

A method for proving statements about all natural numbers.

Mods and exponents

For all integers a, b, m > 0 and $k \ge 0, a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}$.

Mods and exponents

For all integers a, b, m > 0 and $k \ge 0, a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}$.

Proof

Let $a, b, m > 0 \in \mathbb{Z}$ and $k \ge 0 \in \mathbb{Z}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$.

Mods and exponents

For all integers a, b, m > 0 and $k \ge 0, a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}$.

Proof

Let $a, b, m > 0 \in \mathbb{Z}$ and $k \ge 0 \in \mathbb{Z}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$. By the multiplication property, we know that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$. So, taking c to be a and d to be b, we have $a^2 \equiv b^2 \pmod{m}$.

Mods and exponents

For all integers a, b, m > 0 and $k \ge 0, a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}$.

Proof

Let $a, b, m > 0 \in \mathbb{Z}$ and $k \ge 0 \in \mathbb{Z}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$. By the multiplication property, we know that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$. So, taking c to be a and d to be b, we have $a^2 \equiv b^2 \pmod{m}$. Applying this reasoning repeatedly, we have

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \to (a^2 \equiv b^2 \pmod{m})$$
$$(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \to (a^3 \equiv b^3 \pmod{m})$$

 $(a^{(k-1)} \equiv b^{(k-1)} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^k \equiv b^k \pmod{m}).$

Mods and exponents

For all integers a, b, m > 0 and $k \ge 0, a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}$.

Proof (almost):

Let $a, b, m > 0 \in \mathbb{Z}$ and $k \ge 0 \in \mathbb{Z}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$. By the multiplication property, we know that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$. So, taking c to be a and d to be b, we have $a^2 \equiv b^2 \pmod{m}$. Applying this reasoning repeatedly, we have

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \to (a^2 \equiv b^2 \pmod{m})$$
$$(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \to (a^3 \equiv b^3 \pmod{m})$$

. . .

 $(a^{(k-1)} \equiv b^{(k-1)} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^k \equiv b^k \pmod{m}).$ This, uhm, completes the proof? \square

Mods and exponents

For all integers a, b, m > 0 and $k \ge 0, a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}$.

Proof (almost):

Let $a, b, m > 0 \in \mathbb{Z}$ and $k \ge 0 \in \mathbb{Z}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$. By the multiplication property, we know that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$. So, taking c to be a and d to be b, we have $a^2 \equiv b^2 \pmod{m}$. Applying this reasoning repeatedly, we have

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \to (a^2 \equiv b^2 \pmod{m})$$
$$(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \to (a^3 \equiv b^3 \pmod{m})$$

. . .

$$(a^{(k-1)} \equiv b^{(k-1)} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^k \equiv b^k \pmod{m}).$$
 This, uhm, completes the proof? \square

We don't have a proof rule to say "perform this step repeatedly."

Perform a step repeatedly with induction!

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Perform a step repeatedly with induction!

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}) .

Induction is a logical rule of inference that applies (only) over \mathbb{N} .

If we know that a property P holds for 0, and we know that $\forall k. P(k) \rightarrow P(k+1)$, then we can conclude that P holds for all natural numbers.

Perform a step repeatedly with induction!

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}) .

Induction is a logical rule of inference that applies (only) over \mathbb{N} .

If we know that a property P holds for 0, and we know that $\forall k. P(k) \rightarrow P(k+1)$, then we can conclude that P holds for all natural numbers.

Induction is essential for reasoning about programs with loops and recursion.

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Suppose that we are given P(0) and $\forall k. P(k) \rightarrow P(k+1)$.

How does that give us P(k) for a concrete k such as 5?

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Suppose that we are given P(0) and $\forall k. P(k) \rightarrow P(k+1)$.

How does that give us P(k) for a concrete k such as 5?

1. First, we have P(0).

P(0)

Induction
$$P(0)$$
; $\forall k. P(k) \rightarrow P(k+1)$
 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Suppose that we are given P(0) and $\forall k. P(k) \rightarrow P(k+1)$.

How does that give us P(k) for a concrete k such as 5?

- 1. First, we have P(0).
- 2. Since $P(k) \to P(k+1)$ for all k, we have $P(0) \to P(1)$. $\bigvee P(0) \to P(1)$

Induction
$$P(0)$$
; $\forall k. P(k) \rightarrow P(k+1)$
 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Suppose that we are given P(0) and $\forall k. P(k) \rightarrow P(k+1)$.

How does that give us P(k) for a concrete k such as 5?

First, we have P(0).

- Since $P(k) \to P(k+1)$ for all k, we have $P(0) \to P(1)$. $\bigvee P(0) \to P(1)$

Applying Modus Ponens to 1 and 2, we get P(1).

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Suppose that we are given P(0) and $\forall k. P(k) \rightarrow P(k+1)$.

How does that give us P(k) for a concrete k such as 5?

First, we have P(0).

- P(0)
- Since $P(k) \to P(k+1)$ for all k, we have $P(0) \to P(1)$. $\bigvee_{P(0) \to P(1)}$

Applying Modus Ponens to 1 and 2, we get P(1).

- Since $P(k) \to P(k+1)$ for all k, we have $P(1) \to P(2)$. $\bigvee P(1) \to P(2)$

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Suppose that we are given P(0) and $\forall k. P(k) \rightarrow P(k+1)$.

How does that give us P(k) for a concrete k such as 5?

1. First, we have P(0).

2. Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(0) \rightarrow P(1)$.

3. Applying Modus Ponens to 1 and 2, we get P(1).

4. Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(1) \rightarrow P(2)$.

5. Applying Modus Ponens to 3 and 4, we get P(2). $P(0) \rightarrow P(1)$ $P(1) \rightarrow P(1)$ $P(1) \rightarrow P(2)$ $P(1) \rightarrow P(2)$

15

Induction: how does it work?

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

Domain: natural numbers (\mathbb{N}).

Suppose that we are given P(0) and $\forall k. P(k) \rightarrow P(k+1)$.

How does that give us P(k) for a concrete k such as 5?

```
1. First, we have P(0).

2. Since P(k) \to P(k+1) for all k, we have P(0) \to P(1).

3. Applying Modus Ponens to 1 and 2, we get P(1).

4. Since P(k) \to P(k+1) for all k, we have P(1) \to P(2).

5. Applying Modus Ponens to 3 and 4, we get P(2).

11. Applying Modus Ponens to 9 and 10, we get P(5).

P(0)

P(0)

P(0)

P(0)

P(1)

P(1)

P(1)

P(1)

P(1)

P(1)

P(1)

P(1)

P(2)

P(2)

P(2)
```

Using induction

Using induction in formal and English proofs.

Using the induction rule in a formal proof

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

1. Prove P(0)

5.
$$\forall k. P(k) \rightarrow P(k+1)$$

6. $\forall n. P(n)$

Induction: 1, 5

Using the induction rule in a formal proof

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

- 1. Prove P(0)
- 2. Let $k \geq 0$ be an arbitrary integer

- 4. $P(k) \to P(k+1)$
- 5. $\forall k. P(k) \rightarrow P(k+1)$ Intro \forall : 2, 4
- 6. $\forall n. P(n)$ Induction: 1, 5

Using the induction rule in a formal proof

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

- 1. Prove P(0)
- 2. Let $k \ge 0$ be an arbitrary integer
 - 3.1. Assume that P(k) is true
 - 3.2. ...
 - 3.3. Prove P(k + 1) is true
- 4. $P(k) \rightarrow P(k+1)$ Direct Proof Rule
- 5. $\forall k. P(k) \rightarrow P(k+1)$ Intro \forall : 2, 4
- 6. $\forall n. P(n)$ Induction: 1, 5

Using the induction rule in a formal proof: key parts

Induction
$$P(0); \forall k. P(k) \rightarrow P(k+1)$$

 $\therefore \forall n. P(n)$

1. Prove $P(0)$		Base case
2. Let $k \geq 0$ be an arbitrary integer		Inductive
3.1. Assume that $P(k)$ is true		hypothesis
3.2		Inductive
3.3. Prove $P(k+1)$ is true		step
$4. P(k) \rightarrow P(k+1)$	Direct Proof Rule	Conclusion
$5. \ \forall k. P(k) \rightarrow P(k+1)$	Intro ∀: 2, 4	
6. $\forall n. P(n)$	Induction: 1, 5	

Translating to an English proof: the template

- ① Let P(n) be [definition of P(n)]. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0):

 [Proof of P(0).]
- 3 Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \geq 0$.
- 4 Inductive step: We want to prove that P(k + 1) is true. [Proof of P(k + 1). This proof must invoke the inductive hypothesis somewhere.]
- **5** The result follows for all $n \ge 0$ by induction.

1. Prove $P(0)$		Base case
2. Let $k \geq 0$ be an arbitrary integer		Inductive
3.1. Assume that $P(k)$ is true		hypothesis
3.2		Inductive
3.3. Prove $P(k+1)$ is true		step
4. $P(k) \to P(k+1)$ 5. $\forall k. P(k) \to P(k+1)$ 6. $\forall n. P(n)$	Direct Proof Rule Intro ∀: 2, 4 Induction: 1, 5	Conclusion

Translating to an English proof: the template

- ① Let P(n) be [definition of P(n)]. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0):

 [Proof of P(0).]
- ③ Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.
- **4** Inductive step: We want to prove that P(k + 1) is true. [Proof of P(k + 1). This proof must invoke the inductive hypothesis somewhere.]
- **5** The result follows for all $n \geq 0$ by induction.

```
1. Prove P(0)
                                                        Base case
       2. Let k > 0 be an arbitrary integer
                                                        Inductive
                                                        hypothesis
         3.1. Assume that P(k) is true
  3.2. ...
                                                        Inductive
  3.3. Prove P(k + 1) is true
                                                        step
                                                        Conclusion
4. P(k) \to P(k+1)
                              Direct Proof Rule
5. \forall k. P(k) \rightarrow P(k+1) Intro \forall : 2, 4
6. \forall n. P(n)
                             Induction: 1, 5
```

Induction dos and don'ts:

- **Do** write out all 5 steps.
- **Do** point out where you are using the inductive hypothesis in step 4.
- **Don't** assume P(k+1)!

Example proofs by induction

Example proofs about sums and divisibility.

What is $\sum_{i=0}^{n} 2^{i}$ for an arbitrary $n \in \mathbb{N}$?

Recall that $\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{n}$.

What is $\sum_{i=0}^{n} 2^{i}$ for an arbitrary $n \in \mathbb{N}$?

Recall that
$$\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + ... + 2^{n}$$
.

Let's look at a few examples:

$$\sum_{i=0}^{0} 2^{i} = 1$$

$$\sum_{i=0}^{1} 2^{i} = 1 + 2 = 3$$

$$\sum_{i=0}^{2} 2^{i} = 1 + 2 + 4 = 7$$

$$\sum_{i=0}^{3} 2^{i} = 1 + 2 + 4 + 8 = 15$$

$$\sum_{i=0}^{4} 2^{i} = 1 + 2 + 4 + 8 + 16 = 31$$

What is $\sum_{i=0}^{n} 2^{i}$ for an arbitrary $n \in \mathbb{N}$?

Recall that
$$\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + ... + 2^{n}$$
.

Let's look at a few examples:

$$\sum_{i=0}^{0} 2^{i} = 1$$

$$\sum_{i=0}^{1} 2^{i} = 1 + 2 = 3$$

$$\sum_{i=0}^{2} 2^{i} = 1 + 2 + 4 = 7$$

$$\sum_{i=0}^{3} 2^{i} = 1 + 2 + 4 + 8 = 15$$

$$\sum_{i=0}^{4} 2^{i} = 1 + 2 + 4 + 8 + 16 = 31$$

It looks like this sum is $2^{n+1} - 1$.

Let's use induction to prove it!

Prove
$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$
 for all $n \in \mathbb{N}$

Prove
$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$
 for all $n \in \mathbb{N}$

① Let P(n) be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$. We will show that P(n) is true for every integer $n \ge 0$ by induction.

- ① Let P(n) be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} 1 \text{ so } P(0) \text{ is true.}$

- ① Let P(n) be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} 1 \text{ so } P(0) \text{ is true.}$
- 3 Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

- ① Let P(n) be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} 1$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} 1 \text{ so } P(0) \text{ is true.}$
- ③ Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.
- 4 Inductive step: Assume P(k) to prove P(k+1), not vice versa! We want to prove that P(k+1) is true, i.e., $\sum_{i=0}^{k+1} 2^i = 2^{k+2} 1$. Note that $\sum_{i=0}^{k+1} 2^i = (\sum_{i=0}^k 2^i) + 2^{k+1} = (2^{k+1} 1) + 2^{k+1}$ by the inductive hypothesis. From this, we have that $(2^{k+1} 1) + 2^{k+1} = 2 * 2^{k+1} 1 = 2^{k+1+1} 1 = 2^{k+2} 1$, which is exactly P(k+1).

- ① Let P(n) be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} 1$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} 1 \text{ so } P(0) \text{ is true.}$
- ③ Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.
- **4** Inductive step: Assume P(k) to prove P(k+1), not vice versa! We want to prove that P(k+1) is true, i.e., $\sum_{i=0}^{k+1} 2^i = 2^{k+2} 1$. Note that $\sum_{i=0}^{k+1} 2^i = (\sum_{i=0}^k 2^i) + 2^{k+1} = (2^{k+1} 1) + 2^{k+1}$ by the inductive hypothesis. From this, we have that $(2^{k+1} 1) + 2^{k+1} = 2 * 2^{k+1} 1 = 2^{k+1+1} 1 = 2^{k+2} 1$, which is exactly P(k+1).
- **⑤** The result follows for all $n \ge 0$ by induction.

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$
 for all $n \in \mathbb{N}$

① Let P(n) be $\sum_{i=0}^n i = 0+1+\ldots+n = n(n+1)/2$. We will show that P(n) is true for every integer $n \geq 0$ by induction.

- ① Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + ... + n = n(n+1)/2$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{n} i = 0 = 0(0+1)/2$ so P(0) is true.

- ① Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n+1)/2$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{n} i = 0 = 0(0+1)/2$ so P(0) is true.
- ③ Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

- ① Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n+1)/2$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{n} i = 0 = 0(0+1)/2$ so P(0) is true.
- 3 Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.
- **4** Inductive step:

We want to prove that P(k+1) is true, i.e., $\sum_{i=0}^{k+1} i = (k+1)(k+2)/2$. Note that $\sum_{i=0}^{k+1} i = (\sum_{i=0}^{k} i) + (k+1) = (k(k+1)/2) + (k+1)$ by the inductive hypothesis. From this, we have that (k(k+1)/2) + (k+1) = (k+1)(k/2+1) = (k+1)(k+2)/2, which is exactly P(k+1).

- ① Let P(n) be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n+1)/2$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $\sum_{i=0}^{n} i = 0 = 0(0+1)/2$ so P(0) is true.
- ③ Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.
- **4** Inductive step:

We want to prove that P(k+1) is true, i.e., $\sum_{i=0}^{k+1} i = (k+1)(k+2)/2$. Note that $\sum_{i=0}^{k+1} i = (\sum_{i=0}^{k} i) + (k+1) = (k(k+1)/2) + (k+1)$ by the inductive hypothesis. From this, we have that (k(k+1)/2) + (k+1) = (k+1)(k/2+1) = (k+1)(k+2)/2, which is exactly P(k+1).

(5) The result follows for all $n \ge 0$ by induction.

What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

Let's look at a few examples:

$$2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$$

$$2^{2*1} - 1 = 4 - 1 = 3 = 3 * 1$$

$$2^{2*2} - 1 = 16 - 1 = 15 = 3 * 5$$

$$2^{2*3} - 1 = 64 - 1 = 63 = 3 * 21$$

$$2^{2*4} - 1 = 256 - 1 = 255 = 3 * 85$$

What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

Let's look at a few examples:

$$2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$$

 $2^{2*1} - 1 = 4 - 1 = 3 = 3 * 1$
 $2^{2*2} - 1 = 16 - 1 = 15 = 3 * 5$
 $2^{2*3} - 1 = 64 - 1 = 63 = 3 * 21$
 $2^{2*4} - 1 = 256 - 1 = 255 = 3 * 85$

It looks like $3|(2^{2n} - 1)$.

Let's use induction to prove it!

① Let P(n) be $3|(2^{2n}-1)$. We will show that P(n) is true for every integer $n\geq 0$ by induction.

- ① Let P(n) be $3|(2^{2n}-1)$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $2^{2*0} 1 = 1 1 = 0 = 3*0$ so P(0) is true.

- ① Let P(n) be $3|(2^{2n}-1)$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $2^{2*0} 1 = 1 1 = 0 = 3*0$ so P(0) is true.
- ③ Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.

- ① Let P(n) be $3|(2^{2n}-1)$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $2^{2*0} 1 = 1 1 = 0 = 3*0$ so P(0) is true.
- 3 Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.
- **4** Inductive step:

We want to prove that P(k+1) is true, i.e., $3|(2^{2(k+1)}-1)$. By inductive hypothesis, $3|(2^{2k}-1)$ so $2^{2k}-1=3j$ for some integer j. We therefore have that $2^{2(k+1)}-1=2^{2k+2}-1=4(2^{2k})-1=4(3j+1)-1=12j+3=3(4j+1)$. So $3|(2^{2(k+1)}-1)$, which is exactly P(k+1).

- ① Let P(n) be $3|(2^{2n}-1)$. We will show that P(n) is true for every integer $n \ge 0$ by induction.
- ② Base case (n = 0): $2^{2*0} 1 = 1 1 = 0 = 3*0$ so P(0) is true.
- 3 Inductive hypothesis: Suppose that P(k) is true for an arbitrary integer $k \ge 0$.
- 4 Inductive step:

We want to prove that P(k+1) is true, i.e., $3|(2^{2(k+1)}-1)$. By inductive hypothesis, $3|(2^{2k}-1)$ so $2^{2k}-1=3j$ for some integer j. We therefore have that $2^{2(k+1)}-1=2^{2k+2}-1=4(2^{2k})-1=4(3j+1)-1=12j+3=3(4j+1)$. So $3|(2^{2(k+1)}-1)$, which is exactly P(k+1).

(5) The result follows for all $n \ge 0$ by induction.

Summary

Fast modular exponentiation efficiently computes $a^k \mod m$.

Important practical applications include public-key cryptography (RSA).

Induction lets us prove statements about all natural numbers.

A proof by induction must show that P(0) is true (base case).

And it must use the *inductive hypothesis* P(k) to show that P(k + 1) is true (*inductive step*).