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Topics

Modular equations
A quick review of Lecture 14,
Modular exponentiation
A fast algorithm for computing a* mod m.

Mathematical induction
A method for proving statements about all natural numbers.

Using induction
Using induction in formal and English proofs.

Example proofs by induction
Example proofs about sums and divisibility.


http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture14.html

Modular equations

A quick review of Lecture 14,


http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture14.html

Bézout’s theorem and multiplicative inverses

Bézout’s theorem
If a and b are positive integers, then there exist integers s and 7 such that

GCD(a, b) = sa + tb.
We can compute s and 7 using the extended Euclidean algorithm.
If GCD(a, m) = 1,then s mod m is the multiplicative inverse of a modulo m:

e sa+tm = 1sosa = 1 (modm), and we have
e (smod m)a = 1 (mod m).

These inverses let us solve modular equations.



Using multiplicative inverses to solve modular equations

Solve: 7x = 1 (mod 26)

(@ Compute GCD and keep the tableau. @ Back substitute the equations for r.
GCD(26,7) = GCD(7, 5) = GCD(5, 2) | =5—2%(7—1%5)
= GCD(2, 1) = GCD(1, 0) = (=2)%T7+3%5
=1 =(-2)*7+3%(26—-3x%7)
(@) Solve the equations for r in the tableau. =3%264+(—11)«7
a=qxb+r r= a—q+b  @Solveforx.
26=3%T7+5 5=26—3%T7 e Multiplicative inverse of 7 mod 26
T=1%5+2 2= T—-1x%5 =
= P s (—11) mod 26 = 15
5=2x2+1 = DT e So,x = 26k + 15 fork € Z.




Modular exponentiation

A fast algorithm for computing a* mod m.



k

The modular exponentiation problem: a* mod m

How would you compute 78365%*% mod 1047297
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The modular exponentiation problem: a* mod m

How would you compute 78365%%% mod 1047297

Naive approach

First compute 7836551433,
Then take the result modulo 104729.



The modular exponentiation problem: a® mod m
How would you compute 78365%1*% mod 1047297

Naive approach

First compute 7836551433,

Then take the result modulo 104729.
This works but is very inefficient ...

The intermediate result 78365%%3 is a 1,324,257-bit number!
But we only need the remainder mod 104,729, which is 17 bits.



The modular exponentiation problem: a® mod m
How would you compute 78365%1*% mod 1047297

Naive approach

First compute 7836551433,

Then take the result modulo 104729.
This works but is very inefficient ...

The intermediate result 78365%%3 is a 1,324,257-bit number!
But we only need the remainder mod 104,729, which is 17 bits.

To keep the intermediate results small, we use
fast modular exponentiation.



¥ mod m fork = 2

Repeated squaring: a
Ifk = 2i, we can compute @ mod m in just i steps.

Note thata mod m = a (mod m) and b mod m = b (mod m). So, we have
ab mod m = ((a mod m)(b mod m)) mod m.
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Repeated squaring: a® mod m for k = D!

Ifk = 2!, we can compute a* mod m in just i steps.

Note thata mod m = a (mod m) and b mod m = b (mod m). So, we have
ab mod m = ((a mod m)(b mod m)) mod m.

For example:

a’* mod m = (a mod m)* mod m

a* mod m = (a* mod m)* mod m

a® mod m = (a* mod m)> mod m

a'® mod m = (a® mod m)*> mod m

a*> mod m = (a'® mod m)* mod m
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Repeated squaring: a* mod m for k = D!

Ifk = 2i, we can compute a® mod m in just i steps.

Note thata mod m = a (mod m) and b mod m = b (mod m). So, we have
ab mod m = ((a mod m)(b mod m)) mod m.

Forzexample: , What if k is not a power of 2? How do
a” mod m = (a mod m)” mod m we solve 78365%%3 mod 1047297

a* mod m = (a*> mod m)* mod m

a® mod m = (a* mod m)> mod m

a'® mod m = (¢® mod m)*> mod m

a*?> mod m = (a'® mod m)* mod m
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Fast exponentiation: ¢ mod m for all k

Note that 81453 is 10011111000101101 in binary.
81453 = 2! +20 4212 4211 4219427 + 20 + 27 422 4+ 2°

a81453 216 213 212 211 210 29 25 23 22

0
=d *d * d * d * d *d- xd” kdm kd *Clz
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Fast exponentiation: ¢ mod m for all k

Note that 81453 is 10011111000101101 in binary.
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Fast exponentiation: ¢ mod m for all k

Note that 81453 is 10011111000101101 in binary.
81453 = 2! +20 4212 4211 4219427 + 20 + 27 422 4+ 2°

a3 — 02 w2 w2 v wa? wad wa? wa? wad¥ wa?
a*™*53 mod m = ((((((a*" mod m Fast exponentiation
@ rgod m) mod m computes ak mod m using
a* zrlrllod m) mod m < 2log k multiplications
a rgod m) mod m * mod 71.
a*> mod m) mod m

9
a’* mod m) mod m

5
a* mod m) mod m

3
a* mod m) mod m

2
a* mod m) mod m

a* mod m) mod m)



The fast exponentiation algorithm

a” mod m = (¢/ mod m)* mod m

a?*t! mod m = ((a mod m) * (a¥ mod m)) mod m

10



The fast exponentiation algorithm

a” mod m = (¢/ mod m)* mod m

a”*t! mod m = ((a mod m) * (a¥ mod m)) mod m

Example implementation:

// Assumes a > 0, k >= 0, m > 1.
public static long fastModExp(long a, long k, long m) {
if (k == 0) { // k =0
return 1;
} else if (k % 2 == 0) { // k is even
long tmp = fastModExp(a, k/2, m);
return (tmp * tmp) % m;
} else { // k is odd
long tmp = fastModExp(a, k-1, m);
return ((a % m) * tmp) % m;



The fast exponentiation algorithm

a” mod m = (¢/ mod m)* mod m

a?*t! mod m = ((a mod m) * (a¥ mod m)) mod m

Example implementation:

// Assumes a > 0, k >= 0, m > 1.
public static long fastModExp(long a, long k, long m) {
if (k == 0) { // k =0
return 1;
} else if (k % 2 == 0) { // k is even
long tmp = fastModExp(a, k/2, m);
return (tmp * tmp) % m;
} else { // k is odd
long tmp = fastModExp(a, k-1, m);
return ((a % m) * tmp) % m;

783658143 mod 104729 = 45235



Using fast modular exponentiation: RSA encryption

Alice chooses random 512-bit (or 1024-bit) primes p, g and exponent e.
Alice computes m = pq and broadcasts (m, e), which is her public key.
She also computes the multiplicative inverse d of e mod (p — 1)(g — 1), which
serves as her private key.

To encrypt a message a with Alice’s public key, Bob computes C = a® mod m.
This computation uses fast modular exponentiation.
Bob sends the ciphertext C to Alice.

To decrypt C, Alice computes C¢ mod m.
This computation also uses fast modular exponentiation.

It works because C¢ mod m = aforQ < a < munless p|a or g|a.
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Mathematical induction

A method for proving statements about all natural numbers.
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How would you prove this theorem?

Mods and exponents
For allintegersa, b,m > Oandk > 0,a = b (mod m) — a* = b* (mod m).
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Proof
Leta,b,m > 0 € Zandk > 0 € Z be arbitrary. Suppose thata = b (mod m).
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Proof
Leta,b,m > 0 € Zandk > 0 € Z be arbitrary. Suppose thata = b (mod m).

By the multiplication property, we know thatifa = b (mod m) and ¢ = d (mod m), then
ac = bd (mod m). So, taking ¢ to be @ and d to be b, we have a*> = b* (mod m).
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By the multiplication property, we know thatifa = b (mod m) and ¢ = d (mod m), then
ac = bd (mod m). So, taking ¢ to be @ and d to be b, we have a* = b* (mod m).
Applying this reasoning repeatedly, we have
(a = b(modm) A a = b(modm)) — (a* = b* (mod m))
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How would you prove this theorem?

Mods and exponents
For allintegersa, b,m > Oandk > 0,a = b (mod m) — a* = b* (mod m).

Proof (almost):
Leta,b,m > 0 € Z andk > 0 € Z be arbitrary. Suppose thata = b (mod m).

By the multiplication property, we know thatifa = b (mod m) and ¢ = d (mod m), then
ac = bd (mod m). So, taking ¢ to be @ and d to be b, we have a*> = b* (mod m).
Applying this reasoning repeatedly, we have

(a = b(modm) A a = b(modm)) = (a* = b* (mod m))

(@ = b* (modm) A a = b(modm)) — (&’ = b> (mod m))

(@*V = p*=D (mod m) A a = b (mod m)) - (¢ = b* (mod m)).
This, uhm, completes the proof? [
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How would you prove this theorem?

Mods and exponents
For allintegersa, b,m > Oandk > 0,a = b (mod m) — a* = b* (mod m).
Proof (almost):
Leta,b,m > 0 € Zandk > 0 € Z be arbitrary. Suppose thata = b (mod m).
By the multiplication property, we know thatif a = b (mod m) and ¢ = d (mod m), then
ac = bd (mod m). So, taking ¢ to be @ and d to be b, we have a* = b* (mod m).
Applying this reasoning repeatedly, we have
(a = b(modm) A a = b(modm)) — (a* = b* (mod m))
(@* = b* (modm) A a = b (mod m)) = (&’ = b’ (mod m))

(@D = p*=D (mod m) A a = b (mod m)) - (¢ = b* (mod m)).
This, uhm, completes the proof? [

We don’t have a proof rule to say “perform this step repeatedly.”

13



Perform a step repeatedly with induction!

P0); Vk. P(k) - Pk + 1) Domain: natural numbers (N).
c.Vn. P(n)

Induction
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Perform a step repeatedly with induction!

P0); Vk. P(k) - Pk + 1) Domain: natural numbers (N).
c.Vn. P(n)

Induction

Induction is a logical rule of inference that applies (only) over N.
If we know that a property P holds for 0, and

we know that Vk. P(k) — P(k + 1), then
we can conclude that P holds for all natural numbers.
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Perform a step repeatedly with induction!

P0); Vk. P(k) - P(k + 1) Domain: natural numbers (N).
c.Vn. P(n)

Induction

Induction is a logical rule of inference that applies (only) over N.
If we know that a property P holds for 0, and

we know that Vk. P(k) — P(k + 1), then
we can conclude that P holds for all natural numbers.

// £(x) = x for all x >= 0. Induction is essential for reasoning
public int f(int x) { .
if (x == 0) { return 0; } about programs with loops and
else { return f(x - 1) + 1; }

} recursion.

14



Induction: how does it work?

P0); Vk. P(k) - P(k + 1) Domain: natural numbers (N).
c.Vn. P(n)

Induction

Suppose that we are given P(0) and Vk. P(k) — P(k + 1).

How does that give us P(k) for a concrete k such as 5?

15
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Induction: how does it work?
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Induction: how does it work?

P0); Vk. P(k) - P(k + 1) Domain: natural numbers (N).
c.Vn. P(n)

Induction

Suppose that we are given P(0) and Vk. P(k) —» P(k + 1).

How does that give us P(k) for a concrete k such as 5?

First, we have P(0). P0)
Since P(k) — P(k + 1) forall k, we have P(0) — P(1). U P0)=P(1)
Applying Modus Ponens to 1 and 2, we get P(1). P(1)

Since P(k) — P(k + 1) forall k, we have P(1) — P(2). J P(y=P@)
Applying Modus Ponens to 3 and 4, we get P(2). P(2)

o bk W=
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Induction: how does it work?

P0); Vk. P(k) - P(k + 1) Domain: natural numbers (N).
c.Vn. P(n)

Induction

Suppose that we are given P(0) and Vk. P(k) — P(k + 1).

How does that give us P(k) for a concrete k such as 5?

1. First, we have P(0). P(0)
2. Since P(k) - P(k + 1) forall k, we have P(0) — P(1). U P0)=P(1)
3. Applying Modus Ponens to 1 and 2, we get P(1). P(1)
4. Since P(k) - P(k + 1) forall k, we have P(1) — P(2). J P(y=P@)
5. Applying Modus Ponens to 3 and 4, we get P(2). P(2)

; U Plky—Pk+1)
11. Applying Modus Ponens to 9 and 10, we get P(5). P(5)

15



Using induction

Using induction in formal and English proofs.

16



Using the induction rule in a formal proof

P);Vk. P(k) - P(k + 1)
c.Vn. P(n)

Induction

1. Prove P(0)

5 Vk.P(k) - P(k+ 1)
6. Vn. P(n) Induction: 1,5
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Using the induction rule in a formal proof

P);Vk. P(k) - P(k + 1)
c.Vn. P(n)

Induction

1. Prove P(0)
2. Letk > O be an arbitrary integer

4. P(k) - P(k+ 1)
5. Vk.P(k) > P(k+1) IntroV:2,4
6. Vn. P(n) Induction: 1,5
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Using the induction rule in a formal proof

P);Vk. P(k) - P(k + 1)
c.Vn. P(n)

Induction

1. Prove P(0)
2. Letk > 0 be an arbitrary integer

3.1. Assume that P(k) is true

3.2. ...
3.3. Prove P(k + 1)istrue
4, P(k) - P(k+ 1) Direct Proof Rule

5. Vk.P(k) > P(k+1) IntroV:2,4
6. Vn. P(n) Induction: 1,5
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Using the induction rule in a formal proof: key parts

P0);Vk. P(k) —» P(k+ 1)

Induction

c.Vn. P(n)
1. Prove P(0) Base case
2. Letk > 0 be an arbitrary integer Inductive
3.1. Assume that P(k) is true hypothesis
3.2. ... Inductive
3.3. Prove P(k + 1)istrue step
4. P(k) - Pk + 1) Direct Proof Rule Conclusion

5. Vk.P(k) > P(k+1) IntroV:2,4
6. Vn. P(n) Induction: 1,5
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Translating to an English proof: the template

D Let P(n) be [ definition of P(n) ].
We will show that P(n) is true for every integer
n > 0 by induction.

(2 Base case (n = 0):
[ Proof of P(0). ]
@ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary
integer k > 0.

@ Inductive step:
We want to prove that P(k + 1) is true.
[ Proof of P(k + 1). This proof must invoke the
inductive hypothesis somewhere. |

() The result follows for all 7 > 0 by induction.

1. Prove P(0)
2. Letk > 0 be an arbitrary integer

3.1. Assume that P(k) is true
3.2, ...
3.3. Prove P(k + 1) istrue

4. P(k) > P(k+1) Direct Proof Rule
5 Vk.P(ky > P(k+1) IntroV:2,4
6. Vn. P(n) Induction: 1,5

Base case
Inductive
hypothesis

Inductive
step
Conclusion

19



Translating to an English proof: the template

D Let P(n) be [ definition of P(n) ].
We will show that P(n) is true for every integer
n > 0 by induction.

(2 Base case (n = 0):
[ Proof of P(0). ]
@ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary
integer k > 0.

@ Inductive step:
We want to prove that P(k + 1) is true.
[ Proof of P(k + 1). This proof must invoke the
inductive hypothesis somewhere. |

() The result follows for all 7 > 0 by induction.

1. Prove P(0) Base case
2. Letk > 0 be an arbitrary integer Inductive
hypothesi
3.1. Assume that P(k) is true Vel
3.2. ... Inductive
3.3. Prove P(k + 1) istrue step
Conclusi
4. P(k) > P(k+1) Direct Proof Rule oncusion
5 Vk.P(ky > P(k+1) IntroV:2,4
6. Vn. P(n) Induction: 1,5

Induction dos and don’ts:

e Do write out all 5 steps.

e Do point out where you are
using the inductive
hypothesis in step @.

e Don’tassume P(k + 1)!

19



Example proofs by induction

Example proofs about sums and divisibility.
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Whatis Y., 2' for an arbitrary n € N?

Recallthat Yt (2" =2 + 2! + ... + 2",
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Whatis )., 2' for an arbitraryn € N?
Recallthat Yt 2" =2 + 2! + ... + 2",

Let’s look at a few examples:
Z?:ozl: =1
Y02 =1+2=3
Y02 =1+2+4=7
32,2 =1+2+4+8=15
Y2 =1+2+4+8+16 =23l
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Whatis )., 2' for an arbitraryn € N?
Recallthat Yt (2" =2 + 2! + ... + 2",

Let’s look at a few examples:
P
0 i

Zi=02' =1

Y02 =1+2=3

Y2 =1+2+4=7

32,2 =1+2+4+8=15

Y2 =1+2+4+8+16 =23l
It looks like this sumis 27! — 1.

Let’s use induction to prove it!

21



Prove 1,2 = 2" — 1 foralln € N
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Prove 1,2 = 2" — 1 foralln € N

DLetP(m)be Y 2 =20 +2! + .. +2" =2" 1.
We will show that P(n) is true for every integer n > 0 by induction.
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Prove 1,2 = 2" — 1 foralln € N

DLetP(m)be Y 2 =20 +2! + .. +2" =2" 1.

We will show that P(n) is true for every integer n > 0 by induction.

(2 Base case (n = 0):
Z?:o 20 =20 =1 = 29! — 1 50 P(0) is true.
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Prove 1,2 = 2" — 1 foralln € N

DLetP(m)be Y 2 =2 +2! + .. +2" =2" 1.

We will show that P(n) is true for every integer n > 0 by induction.
2 Base case (n = 0):

>0 2 =20 =1=2%"_150P(0)istrue.
@ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer k > 0.

@ Inductive step: -~ Assume P(k) to prove P(k + 1), not vice versa!

We want to prove that P(k + 1) is true, i.e., Zf:ol 21 = 22 _ 1. Note that
Zf:(} D! =(Zf:0 242k =%+ — )42 by the inductive hypothesis. From
this, we have that (2K — 1) 4 281 =2 % pkF1 — 1 = pkl+l _ —ok+2 _

which is exactly P(k + 1).
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Prove )., i = n(n+ 1)/2foralln € N
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Prove )., i = n(n+ 1)/2foralln € N

@LetP(m)be ) i=0+1+...+n=nn+1)2.
We will show that P(n) is true for every integer n > 0 by induction.
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Prove )., i = n(n+ 1)/2foralln € N

@LetP(n)be ) i=0+1+...+n=nn+1)2.

We will show that P(n) is true for every integer n > 0 by induction.
2 Base case (n = 0):

Y oi=0=0(0+ 1)/2s0P(0) is true.
@ Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer k > 0.

@ Inductive step:
We want to prove that P(k + 1) is true, i.e., Zf:ol i = (k+ 1)(k+ 2)/2. Note that
Zf:ol ] =(Z;{=0 +(k+ 1) =(k(k + 1)/2)+(k + 1) by the inductive hypothesis.
From this, we havethat (k(k+ 1)/2) + (k+ 1) =+ 1)(k/12+ 1) =
(k+ 1)(k+ 2)/2, whichis exactly P(k + 1).

23



Prove )., i = n(n+ 1)/2foralln € N

@LetP(m)be ) i=0+1+...+n=nn+1)2.

We will show that P(n) is true for every integer n > 0 by induction.
2 Base case (n = 0):

Y oi=0=0(0+ 1)/2s0P(0) is true.

@ Inductive hypothesis:
Suppose that P(k) is true for an arbitrary integer k > 0.

@ Inductive step:
We want to prove that P(k + 1) is true, i.e., Zf:ol i = (k+ 1)(k+ 2)/2. Note that
Zf:ol ] =(Z;{=0 +(k+ 1) =(k(k + 1)/2)+(k + 1) by the inductive hypothesis.
From this, we havethat (k(k+ 1)/2) + (k+ 1) =+ 1)(k/12+ 1) =
(k+ 1)(k + 2)/2, whichis exactly P(k + 1).

®) The result follows for all 7 > 0 by induction.
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What number divides 2% — 1 foreveryn € N?
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What number divides 2% — 1 foreveryn € N?

Let’s look at a few examples:
220 _1=1-1=0=3%0
27l _ 1 =4-1=3=3x1
272 _1=16—-1=15=3%5
22 _1=64—-1=63=3=x21
22 _1=256—-1=255=3%85
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What number divides 2% — 1 foreveryn € N?

Let’s look at a few examples:
220 _1=1-1=0=3%0
22l _1=4-1=3=3x%1
222 _1=16-1=15=3%5
2% _1=64—-1=63=3x21
22* _ 1 =256 -1 =255 =3 %85
It looks like 3|(2%" — 1).
Let’s use induction to prove it!
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Prove 3|(2%* — 1) foralln € N
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Prove 3|(2%* — 1) foralln € N

@ Let P(n) be 3|(2°" — 1).

We will show that P(n) is true for every integer n > 0 by induction.

25



Prove 3|(2%* — 1) foralln € N

@ Let P(n) be 3|(2°" — 1).

We will show that P(n) is true for every integer n > 0 by induction.
2 Base case (n = 0):

220 _ 1 =1-=1=0=23x%0s0P(0)is true.

25



Prove 3|(2%* — 1) foralln € N

D Let P(n) be 3|(2*" — 1).
We will show that P(n) is true for every integer n > 0 by induction.

2 Base case (n = 0):
220 _1=1-1=0=3%0s0P(0)is true.

@) Inductive hypothesis:
Suppose that P(k) is true for an arbitrary integer k > 0.

25



Prove 3|(2%* — 1) foralln € N

@ Let P(n) be 3|(2°" — 1).

We will show that P(n) is true for every integer n > 0 by induction.
2 Base case (n = 0):

220 _ 1 =1=1=0=23x0s0P(0)is true.

@) Inductive hypothesis:
Suppose that P(k) is true for an arbitrary integer k > 0.

@ Inductive step:

We want to prove that P(k + 1) is true, i.e., 3|(22**D — 1). By inductive hypothesis,
31(2% — 1) s0 2%* — 1 = 3] for some integer j. We therefore have that 2°**1 — 1
=222 _ 1 =402"=1=4@G@j+ )=-1=12j+ 3 = 3(4j + 1). So
31(22%*+D _ 1), which is exactly P(k + 1).
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Prove 3|(2%* — 1) foralln € N

D Let P(n) be 3|(2°" — 1).

We will show that P(n) is true for every integer n > 0 by induction.
2 Base case (n = 0):

220 —1=1-1=0=33%0s0P(0) s true.
@) Inductive hypothesis:

Suppose that P(k) is true for an arbitrary integer k > 0.

@ Inductive step:

We want to prove that P(k + 1) is true, i.e., 3|(22**D — 1). By inductive hypothesis,
31(2% — 1) s0 2%¢ — 1 = 3] for some integer j. We therefore have that 2°**1 — 1
=222 _ 1 =402"=1=4@G@j+ )=-1=12j+ 3 = 3(4j + 1). So
31(22%*+D _ 1), which is exactly P(k + 1).
®) The result follows for all 7 > 0 by induction.
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Summary

Fast modular exponentiation efficiently computes a* mod m.

Important practical applications include public-key cryptography (RSA).

Induction lets us prove statements about all natural numbers.
A proof by induction must show that P(0) is true (base case).
And it must use the inductive hypothesis P(k) to show that P(k + 1) is true
(inductive step).
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