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Primes and composites: definitions and theoremsPrimes and composites: definitions and theorems

Prime number
An integer p > 1 is called prime if its only positive factors are 1 and p.

Composite number
An integer c > 1 is called composite if it is not prime.

Fundamental theorem of arithmetic
Every positive integer greater than 1 has a unique prime factorization.

Euclid’s theorem
There are infinitely many primes.
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Greatest common divisor (GCD): definitionGreatest common divisor (GCD): definition

Greatest common divisor (GCD)
The greatest common divisor of integers a and b, written as GCD(a, b), is the
largest integer d such that d | a and d | b.

We can compute GCDs efficiently using the
Euclidean algorithm. Invented in 300 BC!
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Euclidean algorithm: reviewEuclidean algorithm: review

Euclidean algorithm is based on two useful facts:
GCD(a, 0) = a for all positive integers a.
GCD(a, b) = GCD(b, a mod b) for all positive integers a and b.

Example :

GCD(660, 126)
= GCD(126, 660 mod 126) = GCD(126, 30)
= GCD(30, 126 mod 30) = GCD(30, 6)
= GCD(6, 30 mod 6) = GCD(6, 0)
= 6

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
}

In tableau form:

660 = 5 * 126 + 30
126 = 4 * 30 + 6

30 = 5 * 6 + 0
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Extended Euclidean algorithmExtended Euclidean algorithm
Bézout’s theorem and the extended Euclidean algorithm.
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Bézout’s theorem about GCDsBézout’s theorem about GCDs

Bézout’s theorem
If a and b are positive integers, then there exist integers s and t such that 
GCD(a, b) = sa + tb.
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Bézout’s theorem about GCDsBézout’s theorem about GCDs

Bézout’s theorem
If a and b are positive integers, then there exist integers s and t such that 
GCD(a, b) = sa + tb.

We can extend Euclidean algorithm to find s and t in addition to computing 
GCD(a, b).
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Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau. GCD(35, 27) = 35s + 27t.
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Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.

a = q ∗ b + r
35 = 1 ∗ 27 + 8
27 = 3 ∗ 8 + 3

8 = 2 ∗ 3 + 2
3 = 1 ∗ 2 + 1

GCD(a, b)   GCD(b, a mod b)   r = a mod b
GCD(35, 27) = GCD(27, 35 mod 27) = GCD(27, 8)
  = GCD(8, 27 mod 8) = GCD(8, 3)
  = GCD(3, 8 mod 3) = GCD(3, 2)
  = GCD(2, 3 mod 2) = GCD(2, 1)
  = GCD(1, 2 mod 1) = GCD(1, 0)

GCD(35, 27) = 35s + 27t.
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Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.

a = q ∗ b + r
35 = 1 ∗ 27 + 8
27 = 3 ∗ 8 + 3

8 = 2 ∗ 3 + 2
3 = 1 ∗ 2 + 1

r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2

GCD(35, 27) = 35s + 27t.
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Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2

GCD(35, 27) = 35s + 27t.
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Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1
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Multiplicative inverse Multiplicative inverse   modmod  mm
Suppose GCD(a, m) = 1.
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Multiplicative inverse Multiplicative inverse   modmod  mm
Suppose GCD(a, m) = 1.

By Bézout’s theorem, there exist integers s and t such that sa + tm = 1.
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Multiplicative inverse Multiplicative inverse   modmod  mm
Suppose GCD(a, m) = 1.

By Bézout’s theorem, there exist integers s and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a modulo m: (s mod m)a ≡ 1 (modm)
To see why, note that sa ≡ 1 (modm) and s ≡ s mod m (modm), so by the
multiplication property, (s mod m)a ≡ sa (modm), and by transitivity of
congruence modulo m, we have that (s mod m)a ≡ 1 (modm).
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Multiplicative inverse Multiplicative inverse   modmod  mm
Suppose GCD(a, m) = 1.

By Bézout’s theorem, there exist integers s and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a modulo m: (s mod m)a ≡ 1 (modm)
To see why, note that sa ≡ 1 (modm) and s ≡ s mod m (modm), so by the
multiplication property, (s mod m)a ≡ sa (modm), and by transitivity of
congruence modulo m, we have that (s mod m)a ≡ 1 (modm).

So, we can compute multiplicative inverses with the extended Euclidean
algorithm. These inverses let us solve modular equations.
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Modular equationsModular equations
Solving modular equations with the extended Euclidean algorithm.
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Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

14



Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

① Compute GCD and keep the tableau.

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)
= GCD(2, 1) = GCD(1, 0)
= 1
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② Solve the equations for r in the tableau.

a = q ∗ b + r
26 = 3 ∗ 7 + 5

7 = 1 ∗ 5 + 2
5 = 2 ∗ 2 + 1

r = a − q ∗ b
5 = 26 − 3 ∗ 7
2 = 7 − 1 ∗ 5
1 = 5 − 2 ∗ 2
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r = a − q ∗ b
5 = 26 − 3 ∗ 7
2 = 7 − 1 ∗ 5
1 = 5 − 2 ∗ 2

③ Back substitute the equations for r.

1 = 5 − 2 ∗ (7 − 1 ∗ 5)
= ( − 2) ∗ 7 + 3 ∗ 5
= ( − 2) ∗ 7 + 3 ∗ (26 − 3 ∗ 7)
= 3 ∗ 26 + ( − 11) ∗ 7
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Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

① Compute GCD and keep the tableau.
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7 = 1 ∗ 5 + 2
5 = 2 ∗ 2 + 1

r = a − q ∗ b
5 = 26 − 3 ∗ 7
2 = 7 − 1 ∗ 5
1 = 5 − 2 ∗ 2

③ Back substitute the equations for r.

1 = 5 − 2 ∗ (7 − 1 ∗ 5)
= ( − 2) ∗ 7 + 3 ∗ 5
= ( − 2) ∗ 7 + 3 ∗ (26 − 3 ∗ 7)
= 3 ∗ 26 + ( − 11) ∗ 7

④ Solve for x.

Multiplicative inverse of 7 mod 26
( − 11) mod 26 = 15

So, x = 26k + 15 for k ∈ Z.
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Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)
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Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)

We computed that 15 is the multiplicative inverse of 7 modulo 26:
That is, 7 ∗ 15 ≡ 1 (mod 26).

15



Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)

We computed that 15 is the multiplicative inverse of 7 modulo 26:
That is, 7 ∗ 15 ≡ 1 (mod 26).

By the multiplication property of mod, we have
7 ∗ 15 ∗ 3 ≡ 1 ∗ 3 (mod 26).
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Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)

We computed that 15 is the multiplicative inverse of 7 modulo 26:
That is, 7 ∗ 15 ≡ 1 (mod 26).

By the multiplication property of mod, we have
7 ∗ 15 ∗ 3 ≡ 1 ∗ 3 (mod 26).

So, any y ≡ 15 ∗ 3 (mod 26) is a solution.
That is, y = 19 + 26k for any k ∈ Z is a solution.
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Solving equations modulo a prime numberSolving equations modulo a prime number
GCD(a, m) = 1 if m is prime and 0 < a < m, so we can always solve modular
equations for prime m.

a +7b = (a + b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

a ∗7b = (a ∗ b) mod 7

∗ 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1
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A useful proof technique based on modular equationsA useful proof technique based on modular equations

Suppose that x, y ∈ Z and (x, y) satisfies linear equations
ax + by = c and dx + ey = f,
where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod m > 0 ∈ Z:
ax + by ≡ c (modm) and dx + ey ≡ f (modm).
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But it’s not a solution to x + y = 2 and 2x + 2y = 4.
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A useful proof technique based on modular equationsA useful proof technique based on modular equations

Suppose that x, y ∈ Z and (x, y) satisfies linear equations
ax + by = c and dx + ey = f,
where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod m > 0 ∈ Z:
ax + by ≡ c (modm) and dx + ey ≡ f (modm).

The reverse doesn’t hold. Can you think of a counterexample?
(0, 0) is a solution to x + y ≡ 2 (mod 2) and 2x + 2y ≡ 4 (mod 2).
But it’s not a solution to x + y = 2 and 2x + 2y = 4.

The contrapositive is a useful proof technique:
You can prove that a system of linear equations with integer coefficients has no
integer solutions by showing that those equations modulo m have no solutions.
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SummarySummary
GCD(a, b) is the greatest integer that divides both a and b.

It can be computed efficiently using the Euclidean algorithm.
By Bézout’s theorem, GCD(a, b) = sa + tb  for some integers s, t.

s, t can be computed using the extended Euclidean algorithm.
If GCD(a, b) = 1, s mod b is the multiplicative inverse of a modulo b.
Multiplicative inverses can be used to solve modular equations.
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