
CSE 311 Lecture 14: EuclideanCSE 311 Lecture 14: Euclidean
Algorithm and ModularAlgorithm and Modular
EquationsEquations

 and Emina Torlak Sami Davies

1

https://homes.cs.washington.edu/~emina/
http://samidavies.com/

TopicsTopics
Primes and GCD

A quick review of .
Extended Euclidean algorithm

Bézout’s theorem and the extended Euclidean algorithm.
Modular equations

Solving modular equations with the extended Euclidean algorithm.

Lecture 13

2

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture13.html

Primes and GCDPrimes and GCD
A quick review of .Lecture 13

3

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture13.html

Primes and composites: definitions and theoremsPrimes and composites: definitions and theorems

Prime number
An integer p > 1 is called prime if its only positive factors are 1 and p.

Composite number
An integer c > 1 is called composite if it is not prime.

Fundamental theorem of arithmetic
Every positive integer greater than 1 has a unique prime factorization.

Euclid’s theorem
There are infinitely many primes.

4

Greatest common divisor (GCD): definitionGreatest common divisor (GCD): definition

Greatest common divisor (GCD)
The greatest common divisor of integers a and b, written as GCD(a, b), is the
largest integer d such that d | a and d | b.

We can compute GCDs efficiently using the
Euclidean algorithm. Invented in 300 BC!

5

Euclidean algorithm: reviewEuclidean algorithm: review

Euclidean algorithm is based on two useful facts:
GCD(a, 0) = a for all positive integers a.
GCD(a, b) = GCD(b, a mod b) for all positive integers a and b.

Example :

GCD(660, 126)
= GCD(126, 660 mod 126) = GCD(126, 30)
= GCD(30, 126 mod 30) = GCD(30, 6)
= GCD(6, 30 mod 6) = GCD(6, 0)
= 6

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) {
 if (b == 0)
 return a; // GCD(a, 0) = a
 else
 return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
}

In tableau form:

660 = 5 * 126 + 30
126 = 4 * 30 + 6

30 = 5 * 6 + 0

6

http://tpcg.io/TiMGoj

Extended Euclidean algorithmExtended Euclidean algorithm
Bézout’s theorem and the extended Euclidean algorithm.

7

Bézout’s theorem about GCDsBézout’s theorem about GCDs

Bézout’s theorem
If a and b are positive integers, then there exist integers s and t such that
GCD(a, b) = sa + tb.

8

Bézout’s theorem about GCDsBézout’s theorem about GCDs

Bézout’s theorem
If a and b are positive integers, then there exist integers s and t such that
GCD(a, b) = sa + tb.

We can extend Euclidean algorithm to find s and t in addition to computing
GCD(a, b).

8

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau. GCD(35, 27) = 35s + 27t.

9

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.

a = q ∗ b + r
35 = 1 ∗ 27 + 8
27 = 3 ∗ 8 + 3

8 = 2 ∗ 3 + 2
3 = 1 ∗ 2 + 1

GCD(a, b) GCD(b, a mod b) r = a mod b
GCD(35, 27) = GCD(27, 35 mod 27) = GCD(27, 8)
 = GCD(8, 27 mod 8) = GCD(8, 3)
 = GCD(3, 8 mod 3) = GCD(3, 2)
 = GCD(2, 3 mod 2) = GCD(2, 1)
 = GCD(1, 2 mod 1) = GCD(1, 0)

GCD(35, 27) = 35s + 27t.

9

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.

a = q ∗ b + r
35 = 1 ∗ 27 + 8
27 = 3 ∗ 8 + 3

8 = 2 ∗ 3 + 2
3 = 1 ∗ 2 + 1

r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2

GCD(35, 27) = 35s + 27t.

10

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2

GCD(35, 27) = 35s + 27t.

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2 1 = 3 − 1 ∗ 2 r5 = r3 − q5 ∗ r4.

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2 1 = 3 − 1 ∗ 2 r5 = r3 − q5 ∗ r4.

 = 3 − 1 ∗ (8 − 2 ∗ 3) Plug in r4 = r2 − q4 ∗ r3.

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2 1 = 3 − 1 ∗ 2 r5 = r3 − q5 ∗ r4.

 = 3 − 1 ∗ (8 − 2 ∗ 3) Plug in r4 = r2 − q4 ∗ r3.

 = (− 1) ∗ 8 + 3 ∗ 3 Combine r2, r3 terms.

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2 1 = 3 − 1 ∗ 2 r5 = r3 − q5 ∗ r4.

 = 3 − 1 ∗ (8 − 2 ∗ 3) Plug in r4 = r2 − q4 ∗ r3.

 = (− 1) ∗ 8 + 3 ∗ 3 Combine r2, r3 terms.

 = (− 1) ∗ 8 + 3 ∗ (27 − 3 ∗ 8) Plug in r3 = r1 − q3 ∗ r2.

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2 1 = 3 − 1 ∗ 2 r5 = r3 − q5 ∗ r4.

 = 3 − 1 ∗ (8 − 2 ∗ 3) Plug in r4 = r2 − q4 ∗ r3.

 = (− 1) ∗ 8 + 3 ∗ 3 Combine r2, r3 terms.

 = (− 1) ∗ 8 + 3 ∗ (27 − 3 ∗ 8) Plug in r3 = r1 − q3 ∗ r2.

 = 3 ∗ 27 + (− 10) ∗ 8 Combine r1, r2 terms.

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2 1 = 3 − 1 ∗ 2 r5 = r3 − q5 ∗ r4.

 = 3 − 1 ∗ (8 − 2 ∗ 3) Plug in r4 = r2 − q4 ∗ r3.

 = (− 1) ∗ 8 + 3 ∗ 3 Combine r2, r3 terms.

 = (− 1) ∗ 8 + 3 ∗ (27 − 3 ∗ 8) Plug in r3 = r1 − q3 ∗ r2.

 = 3 ∗ 27 + (− 10) ∗ 8 Combine r1, r2 terms.

 = 3 ∗ 27 + (− 10) ∗ (35 − 1 ∗ 27) Plug in r2 = r0 − q2 ∗ r1.

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for r in the tableau.
3. Back substitute the equations for r.
r = a − q ∗ b
8 = 35 − 1 ∗ 27
3 = 27 − 3 ∗ 8
2 = 8 − 2 ∗ 3
1 = 3 − 1 ∗ 2 1 = 3 − 1 ∗ 2 r5 = r3 − q5 ∗ r4.

 = 3 − 1 ∗ (8 − 2 ∗ 3) Plug in r4 = r2 − q4 ∗ r3.

 = (− 1) ∗ 8 + 3 ∗ 3 Combine r2, r3 terms.

 = (− 1) ∗ 8 + 3 ∗ (27 − 3 ∗ 8) Plug in r3 = r1 − q3 ∗ r2.

 = 3 ∗ 27 + (− 10) ∗ 8 Combine r1, r2 terms.

 = 3 ∗ 27 + (− 10) ∗ (35 − 1 ∗ 27) Plug in r2 = r0 − q2 ∗ r1.

 = (− 10) ∗ 35 + 13 ∗ 27 Combine r0, r1 terms.

GCD(35, 27) = 35s + 27t.

ri = ri− 2 − qi ∗ ri− 1
r0 = a = 35
r1 = b = 27
r2 = r0 − q2 ∗ r1 = 8
r3 = r1 − q3 ∗ r2 = 3
r4 = r2 − q4 ∗ r3 = 2
r5 = r3 − q5 ∗ r4 = 1

11

Multiplicative inverse Multiplicative inverse modmod mm
Suppose GCD(a, m) = 1.

12

Multiplicative inverse Multiplicative inverse modmod mm
Suppose GCD(a, m) = 1.

By Bézout’s theorem, there exist integers s and t such that sa + tm = 1.

12

Multiplicative inverse Multiplicative inverse modmod mm
Suppose GCD(a, m) = 1.

By Bézout’s theorem, there exist integers s and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a modulo m: (s mod m)a ≡ 1 (modm)
To see why, note that sa ≡ 1 (modm) and s ≡ s mod m (modm), so by the
multiplication property, (s mod m)a ≡ sa (modm), and by transitivity of
congruence modulo m, we have that (s mod m)a ≡ 1 (modm).

12

Multiplicative inverse Multiplicative inverse modmod mm
Suppose GCD(a, m) = 1.

By Bézout’s theorem, there exist integers s and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a modulo m: (s mod m)a ≡ 1 (modm)
To see why, note that sa ≡ 1 (modm) and s ≡ s mod m (modm), so by the
multiplication property, (s mod m)a ≡ sa (modm), and by transitivity of
congruence modulo m, we have that (s mod m)a ≡ 1 (modm).

So, we can compute multiplicative inverses with the extended Euclidean
algorithm. These inverses let us solve modular equations.

12

Modular equationsModular equations
Solving modular equations with the extended Euclidean algorithm.

13

Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

14

Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

① Compute GCD and keep the tableau.

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)
= GCD(2, 1) = GCD(1, 0)
= 1

14

Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

① Compute GCD and keep the tableau.

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)
= GCD(2, 1) = GCD(1, 0)
= 1

② Solve the equations for r in the tableau.

a = q ∗ b + r
26 = 3 ∗ 7 + 5

7 = 1 ∗ 5 + 2
5 = 2 ∗ 2 + 1

r = a − q ∗ b
5 = 26 − 3 ∗ 7
2 = 7 − 1 ∗ 5
1 = 5 − 2 ∗ 2

14

Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

① Compute GCD and keep the tableau.

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)
= GCD(2, 1) = GCD(1, 0)
= 1

② Solve the equations for r in the tableau.

a = q ∗ b + r
26 = 3 ∗ 7 + 5

7 = 1 ∗ 5 + 2
5 = 2 ∗ 2 + 1

r = a − q ∗ b
5 = 26 − 3 ∗ 7
2 = 7 − 1 ∗ 5
1 = 5 − 2 ∗ 2

③ Back substitute the equations for r.

1 = 5 − 2 ∗ (7 − 1 ∗ 5)
= (− 2) ∗ 7 + 3 ∗ 5
= (− 2) ∗ 7 + 3 ∗ (26 − 3 ∗ 7)
= 3 ∗ 26 + (− 11) ∗ 7

14

Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

① Compute GCD and keep the tableau.

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)
= GCD(2, 1) = GCD(1, 0)
= 1

② Solve the equations for r in the tableau.

a = q ∗ b + r
26 = 3 ∗ 7 + 5

7 = 1 ∗ 5 + 2
5 = 2 ∗ 2 + 1

r = a − q ∗ b
5 = 26 − 3 ∗ 7
2 = 7 − 1 ∗ 5
1 = 5 − 2 ∗ 2

③ Back substitute the equations for r.

1 = 5 − 2 ∗ (7 − 1 ∗ 5)
= (− 2) ∗ 7 + 3 ∗ 5
= (− 2) ∗ 7 + 3 ∗ (26 − 3 ∗ 7)
= 3 ∗ 26 + (− 11) ∗ 7

④ Solve for x.

Multiplicative inverse of 7 mod 26
(− 11) mod 26 = 15

So, x = 26k + 15 for k ∈ Z.

14

Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)

15

Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)

We computed that 15 is the multiplicative inverse of 7 modulo 26:
That is, 7 ∗ 15 ≡ 1 (mod 26).

15

Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)

We computed that 15 is the multiplicative inverse of 7 modulo 26:
That is, 7 ∗ 15 ≡ 1 (mod 26).

By the multiplication property of mod, we have
7 ∗ 15 ∗ 3 ≡ 1 ∗ 3 (mod 26).

15

Solving a more general equationSolving a more general equation
Solve: 7y ≡ 3 (mod 26)

We computed that 15 is the multiplicative inverse of 7 modulo 26:
That is, 7 ∗ 15 ≡ 1 (mod 26).

By the multiplication property of mod, we have
7 ∗ 15 ∗ 3 ≡ 1 ∗ 3 (mod 26).

So, any y ≡ 15 ∗ 3 (mod 26) is a solution.
That is, y = 19 + 26k for any k ∈ Z is a solution.

15

Solving equations modulo a prime numberSolving equations modulo a prime number
GCD(a, m) = 1 if m is prime and 0 < a < m, so we can always solve modular
equations for prime m.

a +7b = (a + b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

a ∗7b = (a ∗ b) mod 7

∗ 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

16

A useful proof technique based on modular equationsA useful proof technique based on modular equations

Suppose that x, y ∈ Z and (x, y) satisfies linear equations
ax + by = c and dx + ey = f,
where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod m > 0 ∈ Z:
ax + by ≡ c (modm) and dx + ey ≡ f (modm).

17

A useful proof technique based on modular equationsA useful proof technique based on modular equations

Suppose that x, y ∈ Z and (x, y) satisfies linear equations
ax + by = c and dx + ey = f,
where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod m > 0 ∈ Z:
ax + by ≡ c (modm) and dx + ey ≡ f (modm).

The reverse doesn’t hold. Can you think of a counterexample?

17

A useful proof technique based on modular equationsA useful proof technique based on modular equations

Suppose that x, y ∈ Z and (x, y) satisfies linear equations
ax + by = c and dx + ey = f,
where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod m > 0 ∈ Z:
ax + by ≡ c (modm) and dx + ey ≡ f (modm).

The reverse doesn’t hold. Can you think of a counterexample?
(0, 0) is a solution to x + y ≡ 2 (mod 2) and 2x + 2y ≡ 4 (mod 2).
But it’s not a solution to x + y = 2 and 2x + 2y = 4.

17

A useful proof technique based on modular equationsA useful proof technique based on modular equations

Suppose that x, y ∈ Z and (x, y) satisfies linear equations
ax + by = c and dx + ey = f,
where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod m > 0 ∈ Z:
ax + by ≡ c (modm) and dx + ey ≡ f (modm).

The reverse doesn’t hold. Can you think of a counterexample?
(0, 0) is a solution to x + y ≡ 2 (mod 2) and 2x + 2y ≡ 4 (mod 2).
But it’s not a solution to x + y = 2 and 2x + 2y = 4.

The contrapositive is a useful proof technique:
You can prove that a system of linear equations with integer coefficients has no
integer solutions by showing that those equations modulo m have no solutions.

17

SummarySummary
GCD(a, b) is the greatest integer that divides both a and b.

It can be computed efficiently using the Euclidean algorithm.
By Bézout’s theorem, GCD(a, b) = sa + tb for some integers s, t.

s, t can be computed using the extended Euclidean algorithm.
If GCD(a, b) = 1, s mod b is the multiplicative inverse of a modulo b.
Multiplicative inverses can be used to solve modular equations.

18

