

CSE 311 Lecture 14: Euclidean Algorithm and Modular Equations

Emina Torlak and Sami Davies

Topics

Primes and GCD

A quick review of Lecture 13.

Extended Euclidean algorithm

Bézout's theorem and the extended Euclidean algorithm.

Modular equations

Solving modular equations with the extended Euclidean algorithm.

Primes and GCD

A quick review of Lecture 13.

Primes and composites: definitions and theorems

Prime number

An integer p > 1 is called *prime* if its only positive factors are 1 and p.

Composite number

An integer c > 1 is called *composite* if it is not prime.

Fundamental theorem of arithmetic

Every positive integer greater than 1 has a unique prime factorization.

Euclid's theorem

There are infinitely many primes.

Greatest common divisor (GCD): definition

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

We can compute GCDs efficiently using the Euclidean algorithm. Invented in 300 BC!

Euclidean algorithm: review

Euclidean algorithm is based on two useful facts:

GCD(a, 0) = a for all positive integers a.

 $GCD(a, b) = GCD(b, a \mod b)$ for all positive integers a and b.

Example implementation:

GCD(660, 126)

```
= GCD(126, 660 mod 126) = GCD(126, 30)
= GCD(30, 126 mod 30) = GCD(30, 6)
= GCD(6, 30 mod 6) = GCD(6, 0)
= 6
```

In tableau form:

Bézout's theorem and the extended Euclidean algorithm.

Bézout's theorem about GCDs

Bézout's theorem

If a and b are positive integers, then there exist integers s and t such that GCD(a, b) = sa + tb.

Bézout's theorem about GCDs

Bézout's theorem

If a and b are positive integers, then there exist integers s and t such that GCD(a, b) = sa + tb.

We can extend Euclidean algorithm to find s and t in addition to computing GCD(a, b).

1. Compute GCD and keep the tableau.

GCD(35, 27) = 35s + 27t.

1. Compute GCD and keep the tableau.

GCD(35, 27) = 35s + 27t.

$$a = q * b + r$$

 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$
 $GCD(a, b)$ $GCD(b, a \mod b)$ $r = a \mod b$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(8, 27 \mod 8) = GCD(8, 3)$
 $GCD(35, 27) = GCD(8, 27 \mod 8) = GCD(8, 3)$
 $GCD(35, 27) = GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(27, 35 \mod 27) = GCD(27, 8)$
 $GCD(35, 27) = GCD(37, 8)$
 $GCD(35, 27) = GCD(37, 8)$
 $GCD(35, 27) = GCD(37, 8)$
 $GCD(37, 8) = GCD(37, 8)$

1. Compute GCD and keep the tableau.

GCD(35, 27) = 35s + 27t.

2. Solve the equations for r in the tableau.

$$a = q * b + r$$
 $r = a - q * b$
 $35 = 1 * 27 + 8$
 $8 = 35 - 1 * 27$
 $27 = 3 * 8 + 3$
 $3 = 27 - 3 * 8$
 $8 = 2 * 3 + 2$
 $2 = 8 - 2 * 3$
 $3 = 1 * 2 + 1$
 $3 = 3 - 1 * 2$

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

GCD(35, 27) = 35s + 27t.

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

GCD(35, 27) = 35s + 27t.

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$1 = 3 - 1 * 2$$

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

$$GCD(35, 27) = 35s + 27t$$
.

$$r_5 = r_3 - q_5 * r_4$$
.

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$1 = 3 - 1 * 2$$

= 3 - 1 * (8 - 2 * 3)

substitute the equations for
$$r$$
.

$$r_5 = r_3 - q_5 * r_4.$$

Plug in $r_4 = r_2 - q_4 * r_3.$

GCD(35, 27) = 35s + 27t.

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

$$1 = 3 - 1 * 2$$

$$= 3 - 1 * (8 - 2 * 3)$$

$$= (-1) * 8 + 3 * 3$$

$$GCD(35, 27) = 35s + 27t.$$

$$r_5 = r_3 - q_5 * r_4$$
.
Plug in $r_4 = r_2 - q_4 * r_3$.
Combine r_2, r_3 terms.

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

$$GCD(35, 27) = 35s + 27t.$$

$$1 = 3 - 1 * 2$$

$$= 3 - 1 * (8 - 2 * 3)$$

$$= (-1) * 8 + 3 * 3$$

$$= (-1) * 8 + 3 * (27 - 3 * 8)$$

$$\begin{aligned} r_5 &= r_3 - q_5 * r_4. \\ \text{Plug in } r_4 &= r_2 - q_4 * r_3. \\ \text{Combine } r_2, r_3 \text{ terms.} \\ \text{Plug in } r_3 &= r_1 - q_3 * r_2. \end{aligned}$$

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

$$1 = 3 - 1 * 2$$

$$= 3 - 1 * (8 - 2 * 3)$$

$$= (-1) * 8 + 3 * 3$$

$$= (-1) * 8 + 3 * (27 - 3 * 8)$$

$$= 3 * 27 + (-10) * 8$$

$$GCD(35, 27) = 35s + 27t.$$

$$r_5 = r_3 - q_5 * r_4.$$
Plug in $r_4 = r_2 - q_4 * r_3.$
Combine r_2, r_3 terms.
Plug in $r_3 = r_1 - q_3 * r_2.$
Combine r_1, r_2 terms.

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

$$1 = 3 - 1 * 2$$

$$= 3 - 1 * (8 - 2 * 3)$$

$$= (-1) * 8 + 3 * 3$$

$$= (-1) * 8 + 3 * (27 - 3 * 8)$$

$$= 3 * 27 + (-10) * 8$$

= 3 * 27 + (-10) * (35 - 1 * 27)

$$r_5 = r_3 - q_5 * r_4.$$
Plug in $r_4 = r_2 - q_4 * r_3.$
Combine r_2, r_3 terms.
Plug in $r_3 = r_1 - q_3 * r_2.$
Combine r_1, r_2 terms.
Plug in $r_2 = r_0 - q_2 * r_1.$

- 1. Compute GCD and keep the tableau.
- 2. Solve the equations for r in the tableau.
- 3. Back substitute the equations for r.

$$r = a - q * b$$

 $8 = 35 - 1 * 27$
 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

$$r_{i} = r_{i-2} - q_{i} * r_{i-1}$$

$$r_{0} = a = 35$$

$$r_{1} = b = 27$$

$$r_{2} = r_{0} - q_{2} * r_{1} = 8$$

$$r_{3} = r_{1} - q_{3} * r_{2} = 3$$

$$r_{4} = r_{2} - q_{4} * r_{3} = 2$$

$$r_{5} = r_{3} - q_{5} * r_{4} = 1$$

$$1 = 3 - 1 * 2$$

$$= 3 - 1 * (8 - 2 * 3)$$

$$= (-1) * 8 + 3 * 3$$

$$= (-1) * 8 + 3 * (27 - 3 * 8)$$

$$= 3 * 27 + (-10) * 8$$

$$= 3 * 27 + (-10) * (35 - 1 * 27)$$

$$= (-10) * 35 + 13 * 27$$

$$GCD(35, 27) = 35s + 27t$$
.

$$r_5 = r_3 - q_5 * r_4.$$
Plug in $r_4 = r_2 - q_4 * r_3.$
Combine r_2, r_3 terms.
Plug in $r_3 = r_1 - q_3 * r_2.$
Combine r_1, r_2 terms.
Plug in $r_2 = r_0 - q_2 * r_1.$
Combine r_0, r_1 terms.

Suppose GCD(a, m) = 1.

Suppose GCD(a, m) = 1.

By Bézout's theorem, there exist integers s and t such that sa + tm = 1.

Suppose GCD(a, m) = 1.

By Bézout's theorem, there exist integers s and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a modulo m: (s mod m) $a \equiv 1 \pmod{m}$. To see why, note that $sa \equiv 1 \pmod{m}$ and $s \equiv s \pmod{m} \pmod{m}$, so by the multiplication property, ($s \pmod{m}a \equiv sa \pmod{m}$, and by transitivity of congruence modulo m, we have that ($s \pmod{m}a \equiv 1 \pmod{m}$).

Suppose GCD(a, m) = 1.

By Bézout's theorem, there exist integers s and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a modulo m: (s mod m) $a \equiv 1 \pmod{m}$. To see why, note that $sa \equiv 1 \pmod{m}$ and $s \equiv s \pmod{m}$ ($m \pmod{m}$), so by the multiplication property, ($s \pmod{m}$) $a \equiv sa \pmod{m}$, and by transitivity of congruence modulo m, we have that ($s \pmod{m}$) $a \equiv 1 \pmod{m}$.

So, we can compute multiplicative inverses with the extended Euclidean algorithm. These inverses let us solve modular equations.

Modular equations

Solving modular equations with the extended Euclidean algorithm.

Solve: $7x \equiv 1 \pmod{26}$

Solve: $7x \equiv 1 \pmod{26}$

① Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

Solve: $7x \equiv 1 \pmod{26}$

① Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

② Solve the equations for r in the tableau.

$$a = q * b + r$$

 $26 = 3 * 7 + 5$
 $7 = 1 * 5 + 2$
 $5 = 2 * 2 + 1$
 $r = a - q * b$
 $5 = 26 - 3 * 7$
 $2 = 7 - 1 * 5$
 $1 = 5 - 2 * 2$

Solve: $7x \equiv 1 \pmod{26}$

① Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

② Solve the equations for r in the tableau.

$$a = q * b + r$$

$$26 = 3 * 7 + 5$$

$$7 = 1 * 5 + 2$$

$$5 = 2 * 2 + 1$$

$$r = a - q * b$$
 $5 = 26 - 3 * 7$
 $2 = 7 - 1 * 5$
 $1 = 5 - 2 * 2$

$$1 = 5 - 2 * (7 - 1 * 5)$$

$$= (-2) * 7 + 3 * 5$$

$$= (-2) * 7 + 3 * (26 - 3 * 7)$$

$$= 3 * 26 + (-11) * 7$$

Solve: $7x \equiv 1 \pmod{26}$

① Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

② Solve the equations for r in the tableau.

$$a = q * b + r$$

$$26 = 3 * 7 + 5$$

$$7 = 1 * 5 + 2$$

$$5 = 2 * 2 + 1$$

$$r = a - q * b$$
 $5 = 26 - 3 * 7$
 $2 = 7 - 1 * 5$
 $1 = 5 - 2 * 2$

$$1 = 5 - 2 * (7 - 1 * 5)$$

$$= (-2) * 7 + 3 * 5$$

$$= (-2) * 7 + 3 * (26 - 3 * 7)$$

$$= 3 * 26 + (-11) * 7$$

- 4 Solve for x.
 - Multiplicative inverse of 7 mod 26

$$(-11) \mod 26 = 15$$

• So,
$$x = 26k + 15$$
 for $k \in \mathbb{Z}$.

Solve: $7y \equiv 3 \pmod{26}$

Solve: $7y \equiv 3 \pmod{26}$

We computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 * 15 \equiv 1 \pmod{26}$.

Solve: $7y \equiv 3 \pmod{26}$

We computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 * 15 \equiv 1 \pmod{26}$.

By the multiplication property of mod, we have

$$7 * 15 * 3 \equiv 1 * 3 \pmod{26}$$
.

Solve: $7y \equiv 3 \pmod{26}$

We computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 * 15 \equiv 1 \pmod{26}$.

By the multiplication property of mod, we have

$$7 * 15 * 3 \equiv 1 * 3 \pmod{26}$$
.

So, any $y \equiv 15 * 3 \pmod{26}$ is a solution.

That is, y = 19 + 26k for any $k \in Z$ is a solution.

Solving equations modulo a prime number

GCD(a, m) = 1 if m is prime and 0 < a < m, so we can always solve modular equations for prime m.

$$a +_7 b = (a + b) \bmod 7$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

$$a *_7 b = (a * b) \bmod 7$$

*	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Suppose that $x, y \in \mathbb{Z}$ and (x, y) satisfies linear equations

ax + by = c and dx + ey = f, where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod $m > 0 \in \mathbb{Z}$:

$$ax + by \equiv c \pmod{m}$$
 and $dx + ey \equiv f \pmod{m}$.

Suppose that $x, y \in \mathbb{Z}$ and (x, y) satisfies linear equations

$$ax + by = c$$
 and $dx + ey = f$,
where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod $m > 0 \in \mathbb{Z}$:

$$ax + by \equiv c \pmod{m}$$
 and $dx + ey \equiv f \pmod{m}$.

The reverse doesn't hold. Can you think of a counterexample?

Suppose that $x, y \in \mathbb{Z}$ and (x, y) satisfies linear equations

ax + by = c and dx + ey = f, where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod $m > 0 \in \mathbb{Z}$:

 $ax + by \equiv c \pmod{m}$ and $dx + ey \equiv f \pmod{m}$.

The reverse doesn't hold. Can you think of a counterexample?

(0,0) is a solution to $x+y\equiv 2\pmod 2$ and $2x+2y\equiv 4\pmod 2$.

But it's not a solution to x + y = 2 and 2x + 2y = 4.

Suppose that $x, y \in \mathbb{Z}$ and (x, y) satisfies linear equations

ax + by = c and dx + ey = f, where a, b, c, d, e, f are integer coefficients.

Then (x, y) also satisfies the corresponding equations mod $m > 0 \in \mathbb{Z}$:

 $ax + by \equiv c \pmod{m}$ and $dx + ey \equiv f \pmod{m}$.

The reverse doesn't hold. Can you think of a counterexample?

(0,0) is a solution to $x+y\equiv 2\ (\mathrm{mod}\ 2)$ and $2x+2y\equiv 4\ (\mathrm{mod}\ 2)$. But it's not a solution to x+y=2 and 2x+2y=4.

The contrapositive is a useful proof technique:

You can prove that a system of linear equations with integer coefficients has no integer solutions by showing that those equations modulo m have no solutions.

Summary

- GCD(a, b) is the greatest integer that divides both a and b. It can be computed efficiently using the Euclidean algorithm.
- By Bézout's theorem, GCD(a, b) = sa + tb for some integers s, t. s, t can be computed using the extended Euclidean algorithm. If $GCD(a, b) = 1, s \mod b$ is the multiplicative inverse of a modulo b. Multiplicative inverses can be used to solve modular equations.