
CSE 311 Lecture 13: Primes andCSE 311 Lecture 13: Primes and
GCDGCD

 and Emina Torlak Sami Davies

1

https://homes.cs.washington.edu/~emina/
http://samidavies.com/


TopicsTopics
Modular arithmetic applications

A quick wrap-up of .
Primes

Fundamental theorem of arithmetic, Euclid’s theorem, factoring.
Greatest Common Divisors (GCD)

GCD definition and properties.
Euclidean algorithm

Computing GCDs with the Euclidean algorithm.
Extended Euclidean algorithm

Bézout’s theorem and the extended Euclidean algorithm.

Lecture 12

2

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture12.html


Modular arithmetic applicationsModular arithmetic applications
A quick wrap-up of .Lecture 12

3

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture12.html


Applications of modular arithmeticApplications of modular arithmetic
Modular arithmetic is the basis of modern computing, with many
applications.

Examples include

hashing,
pseudo-random numbers, and
simple ciphers.

4



HashingHashing

Problem:
We want to map a small number of data values from a large domain 

 into a small set of locations  to be able to
quickly check if a value is present.

Solution:
Compute  for a prime  close to .
Or, compute  for a prime  close to .

This approach depends on all of the bits of the data.
Helps avoid collisions due to similar values.
But need to manage them if they occur.

{0, 1, … , M − 1} {0, 1, … , n − 1}

hash(x) = x mod p p n

hash(x) = ax + b mod p p n

5



Pseudo-random number generationPseudo-random number generation

Choose  randomly and  carefully to produce a sequence of ’s.

Linear Congruential method
= (a + c) mod mxn+1 xn

x0 a, c, m xn

6



Pseudo-random number generationPseudo-random number generation

Choose  randomly and  carefully to produce a sequence of ’s.

Example
 from BSD

Linear Congruential method
= (a + c) mod mxn+1 xn

x0 a, c, m xn

a = 1103515245, c = 12345, m = 231

= 311x0

= 1743353508, = 1197845517, = 1069836226, …x1 x2 x3

6



Simple ciphersSimple ciphers

Treat letters as numbers: A = 0, B = 1, …
Ceasar or shi� cipher

f (p) = (p + k) mod 26

(p) = (p − k) mod 26f −1

More general version
f (p) = (ap + b) mod 26

(p) = ( (p − b)) mod 26f −1 a−1

7

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Affine_cipher


Simple ciphersSimple ciphers

Treat letters as numbers: A = 0, B = 1, …
Ceasar or shi� cipher

f (p) = (p + k) mod 26

(p) = (p − k) mod 26f −1

More general version
f (p) = (ap + b) mod 26

(p) = ( (p − b)) mod 26f −1 a−1

 is the multiplicative inverse of 
modulo 26, and we’ll soon see how to
compute these inverses.

a−1 a

7

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Affine_cipher


PrimesPrimes
Fundamental theorem of arithmetic, Euclid’s theorem, factoring.

8



PrimalityPrimality

Prime number
An integer  is called prime if its only positive factors are  and .

Composite number
An integer  is called composite if it is not prime.

p > 1 1 p

c > 1

9



PrimalityPrimality

Prime number
An integer  is called prime if its only positive factors are  and .

Composite number
An integer  is called composite if it is not prime.

p > 1 1 p

c > 1

A prime number is divisible only by itself and 1.
We say that  is a factor of  if .

Note that 1 is neither prime nor composite.
The above definitions apply only to integers greater than 1.

a b a|b

9



A key theorem about all positive integersA key theorem about all positive integers

Fundamental theorem of arithmetic
Every positive integer greater than 1 has a unique prime factorization.

10



A key theorem about all positive integersA key theorem about all positive integers

Fundamental theorem of arithmetic
Every positive integer greater than 1 has a unique prime factorization.

In other words, every integer  can be written uniquely as a prime, or
the product of two or more primes ordered by size.

Examples

n > 1

48 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3

591 = 3 ⋅ 197

45, 523 = 45, 523

321, 950 = 2 ⋅ 5 ⋅ 5 ⋅ 47 ⋅ 137

1, 234, 567, 890 = 2 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 3, 607 ⋅ 3, 803

10



A key theorem about primesA key theorem about primes

Euclid’s theorem
There are infinitely many primes.

11



A key theorem about primesA key theorem about primes

Euclid’s theorem
There are infinitely many primes.

Proof by contradiction:

11



A key theorem about primesA key theorem about primes

Euclid’s theorem
There are infinitely many primes.

Proof by contradiction:
Suppose that there are finitely many primes: ., … ,p1 pn

11



A key theorem about primesA key theorem about primes

Euclid’s theorem
There are infinitely many primes.

Proof by contradiction:
Suppose that there are finitely many primes: .
Define the number , and let .

, … ,p1 pn

P = ⋅ … ⋅p1 pn Q = P + 1

11



A key theorem about primesA key theorem about primes

Euclid’s theorem
There are infinitely many primes.

Proof by contradiction:
Suppose that there are finitely many primes: .
Define the number , and let .
Case 1: If  is prime, then  is a prime different from all of   ,   since
it is bigger than all of them. This contradicts the assumption that the list 
includes all primes.

, … ,p1 pn

P = ⋅ … ⋅p1 pn Q = P + 1

Q > 1 Q , … ,p1 pn

, … ,p1 pn

11



A key theorem about primesA key theorem about primes

Euclid’s theorem
There are infinitely many primes.

Proof by contradiction:
Suppose that there are finitely many primes: .
Define the number , and let .
Case 1: If  is prime, then  is a prime different from all of   ,   since
it is bigger than all of them. This contradicts the assumption that the list 
includes all primes.
Case 2: If  is not prime, then  has some prime factor , which must be in   

. Therefore  and  so  and  for some integers . We
then have , which means that . But no prime divides 1,
leading again to a contradiction.

, … ,p1 pn

P = ⋅ … ⋅p1 pn Q = P + 1

Q > 1 Q , … ,p1 pn

, … ,p1 pn

Q > 1 Q p

, … ,p1 pn p|P p|Q P = jp Q = kp j, k

Q − P = (k − j)p = 1 p|1

11



A key theorem about primesA key theorem about primes

Euclid’s theorem
There are infinitely many primes.

Proof by contradiction:
Suppose that there are finitely many primes: .
Define the number , and let .
Case 1: If  is prime, then  is a prime different from all of   ,   since
it is bigger than all of them. This contradicts the assumption that the list 
includes all primes.
Case 2: If  is not prime, then  has some prime factor , which must be in   

. Therefore  and  so  and  for some integers . We
then have , which means that . But no prime divides 1,
leading again to a contradiction.
Since both cases are contradictions, the assumption must be false. 

, … ,p1 pn

P = ⋅ … ⋅p1 pn Q = P + 1

Q > 1 Q , … ,p1 pn

, … ,p1 pn

Q > 1 Q p

, … ,p1 pn p|P p|Q P = jp Q = kp j, k

Q − P = (k − j)p = 1 p|1

◻

11



Important algorithmic problemsImportant algorithmic problems

Primality testing
Given an integer , determine if  is prime.

Factoring
Given an integer , determine the prime factorization of .

n n

n n

12



Important algorithmic problemsImportant algorithmic problems

Primality testing
Given an integer , determine if  is prime.

Factoring
Given an integer , determine the prime factorization of .

n n

n n

We don’t know of an efficient algorithm for factoring large numbers.
The security of commonly used cryptographic protocols (e.g., RSA) hinges on

this fact.
For example, it took two years and thousands of machine-hours to factor a

232-digit (768-bit) number known as .
But factoring is easy for quantum computers!

RSA-768

12

https://en.wikipedia.org/wiki/RSA_numbers#RSA-768


Greatest Common Divisors (GCD)Greatest Common Divisors (GCD)
GCD definition and properties.

13



Definition of greatest common divisor (GCD)Definition of greatest common divisor (GCD)

Greatest common divisor (GCD)
The greatest common divisor of integers  and , written as , is the
largest integer  such that  and .

a b GCD(a, b)

d d|a d|b

14



Definition of greatest common divisor (GCD)Definition of greatest common divisor (GCD)

Greatest common divisor (GCD)
The greatest common divisor of integers  and , written as , is the
largest integer  such that  and .

Examples:

a b GCD(a, b)

d d|a d|b

GCD(100, 125) =

GCD(17, 49) =

GCD(11, 66) =

GCD(13, 0) =

GCD(180, 252) =

14



Definition of greatest common divisor (GCD)Definition of greatest common divisor (GCD)

Greatest common divisor (GCD)
The greatest common divisor of integers  and , written as , is the
largest integer  such that  and .

Examples:

a b GCD(a, b)

d d|a d|b

GCD(100, 125) = 25

GCD(17, 49) =

GCD(11, 66) =

GCD(13, 0) =

GCD(180, 252) =

14



Definition of greatest common divisor (GCD)Definition of greatest common divisor (GCD)

Greatest common divisor (GCD)
The greatest common divisor of integers  and , written as , is the
largest integer  such that  and .

Examples:

a b GCD(a, b)

d d|a d|b

GCD(100, 125) = 25

GCD(17, 49) = 1

GCD(11, 66) =

GCD(13, 0) =

GCD(180, 252) =

14



Definition of greatest common divisor (GCD)Definition of greatest common divisor (GCD)

Greatest common divisor (GCD)
The greatest common divisor of integers  and , written as , is the
largest integer  such that  and .

Examples:

a b GCD(a, b)

d d|a d|b

GCD(100, 125) = 25

GCD(17, 49) = 1

GCD(11, 66) = 11

GCD(13, 0) =

GCD(180, 252) =

14



Definition of greatest common divisor (GCD)Definition of greatest common divisor (GCD)

Greatest common divisor (GCD)
The greatest common divisor of integers  and , written as , is the
largest integer  such that  and .

Examples:

a b GCD(a, b)

d d|a d|b

GCD(100, 125) = 25

GCD(17, 49) = 1

GCD(11, 66) = 11

GCD(13, 0) = 13

GCD(180, 252) =

14



Definition of greatest common divisor (GCD)Definition of greatest common divisor (GCD)

Greatest common divisor (GCD)
The greatest common divisor of integers  and , written as , is the
largest integer  such that  and .

Examples:

a b GCD(a, b)

d d|a d|b

GCD(100, 125) = 25

GCD(17, 49) = 1

GCD(11, 66) = 11

GCD(13, 0) = 13

GCD(180, 252) = 36

14



How can we compute How can we compute ??

A naive approach is to first factor both  and :

GCDGCD((aa,, bb))

a b

a = ⋅ 3 ⋅ ⋅ 7 ⋅ 11 = 46, 2023 52

b = 2 ⋅ ⋅ ⋅ 7 ⋅ 13 = 204, 75032 53

15



How can we compute How can we compute ??

A naive approach is to first factor both  and :

And then compute  as follows:

GCDGCD((aa,, bb))

a b

a = ⋅ 3 ⋅ ⋅ 7 ⋅ 11 = 46, 2023 52

b = 2 ⋅ ⋅ ⋅ 7 ⋅ 13 = 204, 75032 53

GCD(a, b)

GCD(a, b) = ⋅ ⋅ ⋅ ⋅ ⋅2min(3,1) 3min(1,2) 5min(2,3) 7min(1,1) 11min(1,0) 13min(0,1)

15



How can we compute How can we compute ??

A naive approach is to first factor both  and :

And then compute  as follows:

GCDGCD((aa,, bb))

a b

a = ⋅ 3 ⋅ ⋅ 7 ⋅ 11 = 46, 2023 52

b = 2 ⋅ ⋅ ⋅ 7 ⋅ 13 = 204, 75032 53

GCD(a, b)

GCD(a, b) = ⋅ ⋅ ⋅ ⋅ ⋅2min(3,1) 3min(1,2) 5min(2,3) 7min(1,1) 11min(1,0) 13min(0,1)

But factoring is expensive! Can we compute  without factoring?GCD(a, b)

15



Euclidean algorithmEuclidean algorithm
Computing GCDs with the Euclidean algorithm.

16



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .
GCD(a, 0)

a GCD(a, 0) = a

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD(a, 0)

a GCD(a, 0) = a

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . 
 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b)

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
Therefore, . 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

a mod b = a − qb = kd − qjd = d(k − qj)

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
Therefore, . So,  and since ,
we have that .

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

a mod b = a − qb = kd − qjd = d(k − qj) d|(a mod b) d|b

d = GCD(a, b) ≤ GCD(b, a mod b)

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
Therefore, . So,  and since ,
we have that .

Next, let . 
  

 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

a mod b = a − qb = kd − qjd = d(k − qj) d|(a mod b) d|b

d = GCD(a, b) ≤ GCD(b, a mod b)

e = GCD(b, a mod b)

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
Therefore, . So,  and since ,
we have that .

Next, let . Then  and , so  and 
for some .  

 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

a mod b = a − qb = kd − qjd = d(k − qj) d|(a mod b) d|b

d = GCD(a, b) ≤ GCD(b, a mod b)

e = GCD(b, a mod b) e|b e|(a mod b) b = me a mod b = ne

m, n ∈ ℤ

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
Therefore, . So,  and since ,
we have that .

Next, let . Then  and , so  and 
for some . Therefore, . 

 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

a mod b = a − qb = kd − qjd = d(k − qj) d|(a mod b) d|b

d = GCD(a, b) ≤ GCD(b, a mod b)

e = GCD(b, a mod b) e|b e|(a mod b) b = me a mod b = ne

m, n ∈ ℤ a = qb + a mod b = qme + ne

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
Therefore, . So,  and since ,
we have that .

Next, let . Then  and , so  and 
for some . Therefore, . So,  and , we have
that . 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

a mod b = a − qb = kd − qjd = d(k − qj) d|(a mod b) d|b

d = GCD(a, b) ≤ GCD(b, a mod b)

e = GCD(b, a mod b) e|b e|(a mod b) b = me a mod b = ne

m, n ∈ ℤ a = qb + a mod b = qme + ne e|a e|b

e = GCD(b, a mod b) ≤ GCD(a, b)

17



Euclidean algorithm is based on two useful factsEuclidean algorithm is based on two useful facts

If  is a positive integer, then .

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo
If  and  are positive integers, then .

Proof:
First note that by definition of mod,  for some integer .

Now, let . Then  and , so  and  for some .
Therefore, . So,  and since ,
we have that .

Next, let . Then  and , so  and 
for some . Therefore, . So,  and , we have
that . The result follows from these cases. 

GCD(a, 0)

a GCD(a, 0) = a

a b GCD(a, b) = GCD(b, a mod b)

a = qb + a mod b q = a div b

d = GCD(a, b) d|a d|b a = kd b = jd k, j ∈ ℤ

a mod b = a − qb = kd − qjd = d(k − qj) d|(a mod b) d|b

d = GCD(a, b) ≤ GCD(b, a mod b)

e = GCD(b, a mod b) e|b e|(a mod b) b = me a mod b = ne

m, n ∈ ℤ a = qb + a mod b = qme + ne e|a e|b

e = GCD(b, a mod b) ≤ GCD(a, b) ◻

17



Euclidean algorithmEuclidean algorithm

Example :

Apply  until you get .GCD(a, b) = GCD(b, a mod b) GCD(a, 0) = a

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
 

18

http://tpcg.io/TiMGoj


Euclidean algorithmEuclidean algorithm

Example :

Apply  until you get .GCD(a, b) = GCD(b, a mod b) GCD(a, 0) = a

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
 

GCD(660, 126)

18

http://tpcg.io/TiMGoj


Euclidean algorithmEuclidean algorithm

Example :

Apply  until you get .GCD(a, b) = GCD(b, a mod b) GCD(a, 0) = a

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
 

GCD(660, 126)

= GCD(126, 660 mod 126) = GCD(126, 30)

18

http://tpcg.io/TiMGoj


Euclidean algorithmEuclidean algorithm

Example :

Apply  until you get .GCD(a, b) = GCD(b, a mod b) GCD(a, 0) = a

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
 

GCD(660, 126)

= GCD(126, 660 mod 126) = GCD(126, 30)

= GCD(30, 126 mod 30) = GCD(30, 6)

18

http://tpcg.io/TiMGoj


Euclidean algorithmEuclidean algorithm

Example :

Apply  until you get .GCD(a, b) = GCD(b, a mod b) GCD(a, 0) = a

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
 

GCD(660, 126)

= GCD(126, 660 mod 126) = GCD(126, 30)

= GCD(30, 126 mod 30) = GCD(30, 6)

= GCD(6, 30 mod 6) = GCD(6, 0)

18

http://tpcg.io/TiMGoj


Euclidean algorithmEuclidean algorithm

Example :

Apply  until you get .GCD(a, b) = GCD(b, a mod b) GCD(a, 0) = a

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
 

GCD(660, 126)

= GCD(126, 660 mod 126) = GCD(126, 30)

= GCD(30, 126 mod 30) = GCD(30, 6)

= GCD(6, 30 mod 6) = GCD(6, 0)

= 6

18

http://tpcg.io/TiMGoj


Euclidean algorithmEuclidean algorithm

Example :

Apply  until you get .GCD(a, b) = GCD(b, a mod b) GCD(a, 0) = a

implementation

// Assumes a >= b >= 0.
public static int gcd(int a, int b) { 
  if (b == 0) 
    return a;             // GCD(a, 0) = a 
  else   
    return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
} 
 

GCD(660, 126)

= GCD(126, 660 mod 126) = GCD(126, 30)

= GCD(30, 126 mod 30) = GCD(30, 6)

= GCD(6, 30 mod 6) = GCD(6, 0)

= 6

In tableau form:

660 = 5 * 126 + 30
126 = 4 * 30 + 6

30 = 5 * 6 + 0

18

http://tpcg.io/TiMGoj


Extended Euclidean algorithmExtended Euclidean algorithm
Bézout’s theorem and the extended Euclidean algorithm.

19



Bézout’s theorem about GCDsBézout’s theorem about GCDs

Bézout’s theorem
If  and  are positive integers, then there exist integers  and  such that 

.
a b s t

GCD(a, b) = sa + tb

20



Bézout’s theorem about GCDsBézout’s theorem about GCDs

Bézout’s theorem
If  and  are positive integers, then there exist integers  and  such that 

.

We can extend Euclidean algorithm to find  and  in addition to computing 
.

a b s t

GCD(a, b) = sa + tb

s t

GCD(a, b)

20



Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau. .GCD(35, 27) = 35s + 27t

21



Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.

   
   
   
   
   

   

 
 
 
 

.GCD(35, 27) = 35s + 27t

a = q ∗ b + r

35 = 1 ∗ 27 + 8

27 = 3 ∗ 8 + 3

8 = 2 ∗ 3 + 2

3 = 1 ∗ 2 + 1

GCD(a, b) GCD(b, a mod b) r = a mod b

GCD(35, 27) = GCD(27, 35 mod 27) = GCD(27, 8)

= GCD(8, 27 mod 8) = GCD(8, 3)

= GCD(3, 8 mod 3) = GCD(3, 2)

= GCD(2, 3 mod 2) = GCD(2, 1)

= GCD(1, 2 mod 1) = GCD(1, 0)

21



Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for  in the tableau.

   
   
   
   
   

   
   
   
   
   

r

.GCD(35, 27) = 35s + 27t

a = q ∗ b + r

35 = 1 ∗ 27 + 8

27 = 3 ∗ 8 + 3

8 = 2 ∗ 3 + 2

3 = 1 ∗ 2 + 1

r = a − q ∗ b

8 = 35 − 1 ∗ 27

3 = 27 − 3 ∗ 8

2 = 8 − 2 ∗ 3

1 = 3 − 1 ∗ 2

22



Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for  in the tableau.
3. Back substitute the equations for .

   
   
   
   
   

r

r

.GCD(35, 27) = 35s + 27t

r = a − q ∗ b

8 = 35 − 1 ∗ 27

3 = 27 − 3 ∗ 8

2 = 8 − 2 ∗ 3

1 = 3 − 1 ∗ 2

23



Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for  in the tableau.
3. Back substitute the equations for .

   
   
   
   
   

Plug in the def of 2.
   
  Group 8’s and 3’s.
 
   
 
 
   
 

r

r

.GCD(35, 27) = 35s + 27t

r = a − q ∗ b

8 = 35 − 1 ∗ 27

3 = 27 − 3 ∗ 8

2 = 8 − 2 ∗ 3

1 = 3 − 1 ∗ 2

1 = 3 − 1 ∗ (8 − 2 ∗ 3)

= 3 − 8 + 2 ∗ 3

= (−1) ∗ 8 + 3 ∗ 3

23



Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for  in the tableau.
3. Back substitute the equations for .

   
   
   
   
   

Plug in the def of 2.
   
  Group 8’s and 3’s.
  Plug in the def of 3.
   
  Group 8’s and 27’s.
 
   
 

r

r

.GCD(35, 27) = 35s + 27t

r = a − q ∗ b

8 = 35 − 1 ∗ 27

3 = 27 − 3 ∗ 8

2 = 8 − 2 ∗ 3

1 = 3 − 1 ∗ 2

1 = 3 − 1 ∗ (8 − 2 ∗ 3)

= 3 − 8 + 2 ∗ 3

= (−1) ∗ 8 + 3 ∗ 3

= (−1) ∗ 8 + 3 ∗ (27 − 3 ∗ 8)

= (−1) ∗ 8 + 3 ∗ 27 + (−9) ∗ 8

= 3 ∗ 27 + (−10) ∗ 8

23



Extended Euclidean algorithmExtended Euclidean algorithm
1. Compute GCD and keep the tableau.
2. Solve the equations for  in the tableau.
3. Back substitute the equations for .

   
   
   
   
   

Plug in the def of 2.
   
  Group 8’s and 3’s.
  Plug in the def of 3.
   
  Group 8’s and 27’s.
  Plug in the def of 8.
   
  Group 27’s and 35’s.

r

r

.GCD(35, 27) = 35s + 27t

r = a − q ∗ b

8 = 35 − 1 ∗ 27

3 = 27 − 3 ∗ 8

2 = 8 − 2 ∗ 3

1 = 3 − 1 ∗ 2

1 = 3 − 1 ∗ (8 − 2 ∗ 3)

= 3 − 8 + 2 ∗ 3

= (−1) ∗ 8 + 3 ∗ 3

= (−1) ∗ 8 + 3 ∗ (27 − 3 ∗ 8)

= (−1) ∗ 8 + 3 ∗ 27 + (−9) ∗ 8

= 3 ∗ 27 + (−10) ∗ 8

= 3 ∗ 27 + (−10) ∗ (35 − 1 ∗ 27)

= 3 ∗ 27 + (−10) ∗ 35 + 10 ∗ 27

= 13 ∗ 27 + (−10) ∗ 35

23



Multiplicative inverse Multiplicative inverse 
Suppose .

By Bézout’s Theorem, there exist integers  and  such that .

 is the multiplicative inverse of 

  modmod  mm

GCD(a, m) = 1

s t sa + tm = 1

s mod m a

1 = (sa + tm) mod m = sa mod m

24



Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 7x ≡ 1 (mod 26)

25



Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 

① Compute GCD and keep the tableau.

7x ≡ 1 (mod 26)

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)

= GCD(2, 1) = GCD(1, 0)

= 1

25



Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 

① Compute GCD and keep the tableau.

② Solve the equations for  in the tableau.

   
   
   
   

   
   
   
   

7x ≡ 1 (mod 26)

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)

= GCD(2, 1) = GCD(1, 0)

= 1

r

a = b ∗ q + r

26 = 7 ∗ 3 + 5

7 = 5 ∗ 1 + 2

5 = 2 ∗ 2 + 1

r = a − b ∗ q

5 = 26 − 7 ∗ 3

2 = 7 − 5 ∗ 1

1 = 5 − 2 ∗ 2

25



Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 

① Compute GCD and keep the tableau.

② Solve the equations for  in the tableau.

   
   
   
   

   
   
   
   

③ Back substitute the equations for .

7x ≡ 1 (mod 26)

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)

= GCD(2, 1) = GCD(1, 0)

= 1

r

a = b ∗ q + r

26 = 7 ∗ 3 + 5

7 = 5 ∗ 1 + 2

5 = 2 ∗ 2 + 1

r = a − b ∗ q

5 = 26 − 7 ∗ 3

2 = 7 − 5 ∗ 1

1 = 5 − 2 ∗ 2

r

1 = 5 − 2 ∗ (7 − 5 ∗ 1)

= (−2) ∗ 7 + 3 ∗ 5

= (−2) ∗ 7 + 3 ∗ (26 − 7 ∗ 3)

= (−11) ∗ 7 + 3 ∗ 26

25



Using multiplicative inverses to solve modular equationsUsing multiplicative inverses to solve modular equations
Solve: 

① Compute GCD and keep the tableau.

② Solve the equations for  in the tableau.

   
   
   
   

   
   
   
   

③ Back substitute the equations for .

④ Solve for .

Multiplicative inverse of 7 mod 26

So,  for .

7x ≡ 1 (mod 26)

GCD(26, 7) = GCD(7, 5) = GCD(5, 2)

= GCD(2, 1) = GCD(1, 0)

= 1

r

a = b ∗ q + r

26 = 7 ∗ 3 + 5

7 = 5 ∗ 1 + 2

5 = 2 ∗ 2 + 1

r = a − b ∗ q

5 = 26 − 7 ∗ 3

2 = 7 − 5 ∗ 1

1 = 5 − 2 ∗ 2

r

1 = 5 − 2 ∗ (7 − 5 ∗ 1)

= (−2) ∗ 7 + 3 ∗ 5

= (−2) ∗ 7 + 3 ∗ (26 − 7 ∗ 3)

= (−11) ∗ 7 + 3 ∗ 26

x

(−11) mod 26 = 15

x = 26k + 15 k ∈ ℤ

25



SummarySummary
Every positive integer  is either prime or composite.

 is prime if its only factors are  and 1.
Otherwise,  is composite.

 is the greatest integer that divides both  and .
It can be computed efficiently using the Euclidean algorithm.

By Bézout’s Theorem,  for some integers .
 can be computed using the extended Euclidean algorithm.

If ,  is the multiplicative inverse of  modulo .

p > 1

p p

p

GCD(a, b) a b

GCD(a, b) = sa + tb s, t

s, t

GCD(a, b) = 1 s mod b a b

26


