

CSE 311 Lecture 13: Primes and GCD

Emina Torlak and Sami Davies

Topics

Modular arithmetic applications

A quick wrap-up of Lecture 12.

Primes

Fundamental theorem of arithmetic, Euclid's theorem, factoring.

Greatest Common Divisors (GCD)

GCD definition and properties.

Euclidean algorithm

Computing GCDs with the Euclidean algorithm.

Extended Euclidean algorithm

Bézout's theorem and the extended Euclidean algorithm.

Modular arithmetic applications

A quick wrap-up of Lecture 12.

Applications of modular arithmetic

Modular arithmetic is the basis of modern computing, with many applications.

Examples include

- hashing,
- pseudo-random numbers, and
- simple ciphers.

Hashing

Problem:

We want to map a small number of data values from a large domain

 $\{0, 1, \dots, M - 1\}$ into a small set of locations $\{0, 1, \dots, n - 1\}$ to be able to quickly check if a value is present.

Solution:

Compute $hash(x) = x \mod p$ for a prime p close to n.

Or, compute $hash(x) = ax + b \mod p$ for a prime p close to n.

This approach depends on all of the bits of the data.

Helps avoid collisions due to similar values.

But need to manage them if they occur.

Pseudo-random number generation

Linear Congruential method $x_{n+1} = (ax_n + c) \mod m$

Choose x_0 randomly and a, c, m carefully to produce a sequence of x_n 's.

Pseudo-random number generation

Linear Congruential method $x_{n+1} = (ax_n + c) \mod m$

Choose x_0 randomly and a, c, m carefully to produce a sequence of x_n 's.

Example

$$a = 1103515245, c = 12345, m = 2^{31}$$
 from BSD
 $x_0 = 311$
 $x_1 = 1743353508, x_2 = 1197845517, x_3 = 1069836226, ...$

Simple ciphers

Ceasar or shift cipher

Treat letters as numbers: A = 0, B = 1, ... $f(p) = (p + k) \mod 26$ $f^{-1}(p) = (p - k) \mod 26$

More general version

$$f(p) = (ap + b) \mod 26$$

 $f^{-1}(p) = (a^{-1}(p - b)) \mod 26$

Simple ciphers

Ceasar or shift cipher

Treat letters as numbers: A = 0, B = 1, ... $f(p) = (p + k) \mod 26$ $f^{-1}(p) = (p - k) \mod 26$

More general version

 $f(p) = (ap + b) \mod 26$ $f^{-1}(p) = (a^{-1}(p - b)) \mod 26$

 a^{-1} is the *multiplicative inverse* of a modulo 26, and we'll soon see how to compute these inverses.

Primes

Fundamental theorem of arithmetic, Euclid's theorem, factoring.

Primality

Prime number

An integer p > 1 is called *prime* if its only positive factors are 1 and p.

Composite number

An integer c > 1 is called *composite* if it is not prime.

Primality

Prime number

An integer p > 1 is called *prime* if its only positive factors are 1 and p.

Composite number

An integer c > 1 is called *composite* if it is not prime.

A prime number is divisible only by itself and 1.
We say that a is a factor of b if a | b.
Note that 1 is neither prime nor composite.
The above definitions apply only to integers greater than 1.

A key theorem about all positive integers

Fundamental theorem of arithmetic

Every positive integer greater than 1 has a unique prime factorization.

A key theorem about all positive integers

Fundamental theorem of arithmetic

Every positive integer greater than 1 has a unique prime factorization.

In other words, every integer n > 1 can be written uniquely as a prime, or the product of two or more primes ordered by size.

Examples

 $48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$ $591 = 3 \cdot 197$ 45,523 = 45,523 $321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137$ $1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803$

Euclid's theorem There are infinitely many primes.

Euclid's theorem There are infinitely many primes.

Proof by contradiction:

Euclid's theorem

There are infinitely many primes.

Proof by contradiction:

Suppose that there are finitely many primes: p_1, \ldots, p_n .

Euclid's theorem

There are infinitely many primes.

Proof by contradiction:

Suppose that there are finitely many primes: p_1, \ldots, p_n . Define the number $P = p_1 \cdot \ldots \cdot p_n$, and let Q = P + 1.

Euclid's theorem

There are infinitely many primes.

Proof by contradiction:

Suppose that there are finitely many primes: p_1, \ldots, p_n .

Define the number $P = p_1 \cdot \ldots \cdot p_n$, and let Q = P + 1.

Case 1: If Q > 1 is prime, then Q is a prime different from all of p_1, \ldots, p_n , since it is bigger than all of them. This contradicts the assumption that the list p_1, \ldots, p_n includes all primes.

Euclid's theorem

There are infinitely many primes.

Proof by contradiction:

Suppose that there are finitely many primes: p_1, \ldots, p_n .

Define the number $P = p_1 \cdot \ldots \cdot p_n$, and let Q = P + 1.

Case 1: If Q > 1 is prime, then Q is a prime different from all of p_1, \ldots, p_n , since it is bigger than all of them. This contradicts the assumption that the list p_1, \ldots, p_n includes all primes.

Case 2: If Q > 1 is not prime, then Q has some prime factor p, which must be in p_1, \ldots, p_n . Therefore p|P and p|Q so P = jp and Q = kp for some integers j, k. We then have Q - P = (k - j)p = 1, which means that p|1. But no prime divides 1, leading again to a contradiction.

Euclid's theorem

There are infinitely many primes.

Proof by contradiction:

Suppose that there are finitely many primes: p_1, \ldots, p_n .

Define the number $P = p_1 \cdot \ldots \cdot p_n$, and let Q = P + 1.

Case 1: If Q > 1 is prime, then Q is a prime different from all of p_1, \ldots, p_n , since it is bigger than all of them. This contradicts the assumption that the list p_1, \ldots, p_n includes all primes.

Case 2: If Q > 1 is not prime, then Q has some prime factor p, which must be in p_1, \ldots, p_n . Therefore p|P and p|Q so P = jp and Q = kp for some integers j, k. We then have Q - P = (k - j)p = 1, which means that p|1. But no prime divides 1, leading again to a contradiction.

Since both cases are contradictions, the assumption must be false. □

Important algorithmic problems

Primality testing

Given an integer *n*, determine if *n* is prime.

Factoring

Given an integer *n*, determine the prime factorization of *n*.

Important algorithmic problems

Primality testing

Given an integer *n*, determine if *n* is prime.

Factoring

Given an integer *n*, determine the prime factorization of *n*.

- We don't know of an efficient algorithm for factoring large numbers.
- The security of commonly used cryptographic protocols (e.g., RSA) hinges on this fact.
- For example, it took two years and thousands of machine-hours to factor a 232-digit (768-bit) number known as RSA-768.
- But factoring is easy for quantum computers!

Greatest Common Divisors (GCD)

GCD definition and properties.

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that d|a and d|b.

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that d|a and d|b.

Examples:

 $\begin{array}{ll} GCD(100, 125) &= \\ GCD(17, 49) &= \\ GCD(11, 66) &= \\ GCD(13, 0) &= \\ GCD(180, 252) &= \\ \end{array}$

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that d|a and d|b.

Examples:

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that d|a and d|b.

Examples:

 $\begin{array}{rcl} GCD(100, 125) &=& 25\\ GCD(17, 49) &=& 1\\ GCD(11, 66) &=& \\ GCD(13, 0) &=& \\ GCD(180, 252) &=& \end{array}$

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that d|a and d|b.

Examples:

 $\begin{array}{rcl} GCD(100, 125) &=& 25\\ GCD(17, 49) &=& 1\\ GCD(11, 66) &=& 11\\ GCD(13, 0) &=& \\ GCD(180, 252) &=& \end{array}$

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that d|a and d|b.

Examples:

GCD(100, 125)	=	25
GCD(17, 49)	=	1
GCD(11, 66)	=	11
GCD(13, 0)	=	13
GCD(180, 252)	=	

Greatest common divisor (GCD)

The greatest common divisor of integers a and b, written as GCD(a, b), is the largest integer d such that d|a and d|b.

Examples:

GCD(100, 125)	=	25
GCD(17, 49)	=	1
GCD(11, 66)	=	11
GCD(13, 0)	=	13
GCD(180, 252)	=	36

How can we compute GCD(a, b)?

A naive approach is to first factor both *a* and *b*:

$$a = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 = 46,20$$

$$b = 2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13 = 204,750$$

How can we compute GCD(a, b)?

A naive approach is to first factor both *a* and *b*:

$$a = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 = 46,20$$

$$b = 2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13 = 204,750$$

And then compute GCD(a, b) as follows:

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

How can we compute GCD(a, b)?

A naive approach is to first factor both *a* and *b*:

$$a = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 = 46,20$$

$$b = 2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13 = 204,750$$

And then compute GCD(a, b) as follows:

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

But factoring is expensive! Can we compute GCD(a, b) without factoring?

Euclidean algorithm

Computing GCDs with the Euclidean algorithm.

Euclidean algorithm is based on two useful facts

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$. **Proof:**

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \operatorname{div} b$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \dim b$. Now, let d = GCD(a, b).

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \dim b$.

Now, let d = GCD(a, b). Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \dim b$. Now, let d = GCD(a, b). Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$. Therefore, $a \mod b = a - qb = kd - qjd = d(k - qj)$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \operatorname{div} b$.

Now, let $d = \operatorname{GCD}(a, b)$. Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$. Therefore, $a \mod b = a - qb = kd - qjd = d(k - qj)$. So, $d|(a \mod b)$ and since d|b, we have that $d = \operatorname{GCD}(a, b) \leq \operatorname{GCD}(b, a \mod b)$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \dim b$.

Now, let $d = \operatorname{GCD}(a, b)$. Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$. Therefore, $a \mod b = a - qb = kd - qjd = d(k - qj)$. So, $d|(a \mod b)$ and since d|b, we have that $d = \operatorname{GCD}(a, b) \leq \operatorname{GCD}(b, a \mod b)$.

Next, let $e = \operatorname{GCD}(b, a \mod b)$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \dim b$.

Now, let $d = \operatorname{GCD}(a, b)$. Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$. Therefore, $a \mod b = a - qb = kd - qjd = d(k - qj)$. So, $d|(a \mod b)$ and since d|b, we have that $d = \operatorname{GCD}(a, b) \leq \operatorname{GCD}(b, a \mod b)$.

Next, let $e = \text{GCD}(b, a \mod b)$. Then e|b and $e|(a \mod b)$, so b = me and $a \mod b = ne$ for some $m, n \in \mathbb{Z}$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \operatorname{div} b$.

Now, let $d = \operatorname{GCD}(a, b)$. Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$. Therefore, $a \mod b = a - qb = kd - qjd = d(k - qj)$. So, $d|(a \mod b)$ and since d|b, we have that $d = \operatorname{GCD}(a, b) \leq \operatorname{GCD}(b, a \mod b)$.

Next, let $e = \text{GCD}(b, a \mod b)$. Then e|b and $e|(a \mod b)$, so b = me and $a \mod b = ne$ for some $m, n \in \mathbb{Z}$. Therefore, $a = qb + a \mod b = qme + ne$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \dim b$.

Now, let $d = \operatorname{GCD}(a, b)$. Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$. Therefore, $a \mod b = a - qb = kd - qjd = d(k - qj)$. So, $d|(a \mod b)$ and since d|b, we have that $d = \operatorname{GCD}(a, b) \leq \operatorname{GCD}(b, a \mod b)$.

Next, let $e = \operatorname{GCD}(b, a \mod b)$. Then e|b and $e|(a \mod b)$, so b = me and $a \mod b = ne$ for some $m, n \in \mathbb{Z}$. Therefore, $a = qb + a \mod b = qme + ne$. So, e|a and e|b, we have that $e = \operatorname{GCD}(b, a \mod b) \leq \operatorname{GCD}(a, b)$.

GCD(a, 0)

If *a* is a positive integer, then GCD(a, 0) = a.

Proof follows straightforwardly from the definition of GCD and divisibility.

GCD and modulo

If *a* and *b* are positive integers, then $GCD(a, b) = GCD(b, a \mod b)$.

Proof:

First note that by definition of mod, $a = qb + a \mod b$ for some integer $q = a \dim b$.

Now, let $d = \operatorname{GCD}(a, b)$. Then d|a and d|b, so a = kd and b = jd for some $k, j \in \mathbb{Z}$. Therefore, $a \mod b = a - qb = kd - qjd = d(k - qj)$. So, $d|(a \mod b)$ and since d|b, we have that $d = \operatorname{GCD}(a, b) \leq \operatorname{GCD}(b, a \mod b)$.

Next, let $e = \operatorname{GCD}(b, a \mod b)$. Then e|b and $e|(a \mod b)$, so b = me and $a \mod b = ne$ for some $m, n \in \mathbb{Z}$. Therefore, $a = qb + a \mod b = qme + ne$. So, e|a and e|b, we have that $e = \operatorname{GCD}(b, a \mod b) \leq \operatorname{GCD}(a, b)$. The result follows from these cases. \Box

Apply $GCD(a, b) = GCD(b, a \mod b)$ until you get GCD(a, 0) = a.

Example implementation:

Apply $GCD(a, b) = GCD(b, a \mod b)$ until you get GCD(a, 0) = a.

Example implementation:

GCD(660, 126)

Apply $GCD(a, b) = GCD(b, a \mod b)$ until you get GCD(a, 0) = a.

Example implementation:

GCD(660, 126)

 $= \text{GCD}(126, 660 \mod 126) = \text{GCD}(126, 30)$

Apply $GCD(a, b) = GCD(b, a \mod b)$ until you get GCD(a, 0) = a.

Example implementation:

GCD(660, 126)

```
= \text{GCD}(126, 660 \mod 126) = \text{GCD}(126, 30)
```

 $= \text{GCD}(30, 126 \mod 30) = \text{GCD}(30, 6)$

Apply $GCD(a, b) = GCD(b, a \mod b)$ until you get GCD(a, 0) = a.

Example implementation:

GCD(660, 126)

- $= \text{GCD}(126, 660 \mod 126) = \text{GCD}(126, 30)$
- $= \text{GCD}(30, 126 \mod 30) = \text{GCD}(30, 6)$
- $= \text{GCD}(6, 30 \mod 6) = \text{GCD}(6, 0)$

Apply $GCD(a, b) = GCD(b, a \mod b)$ until you get GCD(a, 0) = a.

Example implementation:

GCD(660, 126)

```
= \text{GCD}(126, 660 \mod 126) = \text{GCD}(126, 30)
```

```
= \text{GCD}(30, 126 \mod 30) = \text{GCD}(30, 6)
```

```
= \text{GCD}(6, 30 \mod 6) = \text{GCD}(6, 0)
```

= 6

Apply $GCD(a, b) = GCD(b, a \mod b)$ until you get GCD(a, 0) = a.

Example implementation:

GCD(660, 126)

```
= \text{GCD}(126, 660 \mod 126) = \text{GCD}(126, 30)
```

- $= \text{GCD}(30, 126 \mod 30) = \text{GCD}(30, 6)$
- $= \operatorname{GCD}(6, 30 \bmod 6) = \operatorname{GCD}(6, 0)$

= 6

In tableau form: 660 = 5 * 126 + 30 126 = 4 * 30 + 6 30 = 5 * 6 + 0

Bézout's theorem and the extended Euclidean algorithm.

Bézout's theorem about GCDs

Bézout's theorem

If *a* and *b* are positive integers, then there exist integers *s* and *t* such that GCD(a, b) = sa + tb.

Bézout's theorem about GCDs

Bézout's theorem

If *a* and *b* are positive integers, then there exist integers *s* and *t* such that GCD(a, b) = sa + tb.

We can extend Euclidean algorithm to find s and t in addition to computing GCD(a, b).

1. Compute GCD and keep the tableau.

GCD(35, 27) = 35s + 27t.

1. Compute GCD and keep the tableau.

GCD(35, 27) = 35s + 27t.

a = q * b + r	GCD(a, b)	$GCD(b, a \mod b)$	$r = a \mod b$
35 = 1 * 27 + 8	GCD(35, 27)	= GCD(27, 35 mod 27	$() = \operatorname{GCD}(27, 8)$
27 = 3 * 8 + 3		$= \operatorname{GCD}(8, 27 \mod 8)$	= GCD(8, 3)
8 = 2 * 3 + 2		= GCD(3, 8 mod 3)	= GCD(3, 2)
3 = 1 * 2 + 1		= GCD(2, 3 mod 2)	= GCD(2, 1)
		= GCD(1, 2 mod 1)	= GCD $(1, 0)$

Compute GCD and keep the tableau.
 Solve the equations for *r* in the tableau.

$$a = q * b + r$$

$$35 = 1 * 27 + 8$$

$$27 = 3 * 8 + 3$$

$$8 = 2 * 3 + 2$$

$$3 = 1 * 2 + 1$$

$$GCD(35, 27) = 35s + 27t.$$

$$r = a - q * b$$

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Compute GCD and keep the tableau.
 Solve the equations for *r* in the tableau.
 Back substitute the equations for *r*.

r = a - q * b 8 = 35 - 1 * 27 3 = 27 - 3 * 8 2 = 8 - 2 * 31 = 3 - 1 * 2 GCD(35, 27) = 35s + 27t.

Compute GCD and keep the tableau.
 Solve the equations for *r* in the tableau.
 Back substitute the equations for *r*.

1

r = a - q * b 8 = 35 - 1 * 27 3 = 27 - 3 * 8 2 = 8 - 2 * 31 = 3 - 1 * 2

$$= 3 - 1 * (8 - 2 * 3)$$

= 3 - 8 + 2 * 3
= (-1) * 8 + 3 * 3

GCD(35, 27) = 35s + 27t.

Plug in the def of 2.

Group 8's and 3's.

Compute GCD and keep the tableau.
 Solve the equations for *r* in the tableau.
 Back substitute the equations for *r*.

1

r = a - q * b 8 = 35 - 1 * 27 3 = 27 - 3 * 8 2 = 8 - 2 * 31 = 3 - 1 * 2

$$= 3 - 1 * (8 - 2 * 3)$$

= 3 - 8 + 2 * 3
= (-1) * 8 + 3 * 3
= (-1) * 8 + 3 * (27 - 3 * 8)
= (-1) * 8 + 3 * 27 + (-9) * 8
= 3 * 27 + (-10) * 8

GCD(35, 27) = 35s + 27t.

Plug in the def of 2. Group 8's and 3's. Plug in the def of 3.

Group 8's and 27's.

Compute GCD and keep the tableau.
 Solve the equations for r in the tableau.
 Back substitute the equations for r.

1

```
r = a - q * b

8 = 35 - 1 * 27

3 = 27 - 3 * 8

2 = 8 - 2 * 3

1 = 3 - 1 * 2
```

$$= 3 - 1 * (8 - 2 * 3)$$

= 3 - 8 + 2 * 3
= (-1) * 8 + 3 * 3
= (-1) * 8 + 3 * (27 - 3 * 8)
= (-1) * 8 + 3 * 27 + (-9) * 8
= 3 * 27 + (-10) * 8
= 3 * 27 + (-10) * (35 - 1 * 27)
= 3 * 27 + (-10) * 35 + 10 * 27)
= 13 * 27 + (-10) * 35

$$GCD(35, 27) = 35s + 27t.$$

Plug in the def of 2. Group 8's and 3's. Plug in the def of 3.

Group 8's and 27's. Plug in the def of 8.

Group 27's and 35's.

Multiplicative inverse mod *m*

Suppose GCD(a, m) = 1.

By Bézout's Theorem, there exist integers s and t such that sa + tm = 1.

 $s \mod m$ is the multiplicative inverse of a $1 = (sa + tm) \mod m = sa \mod m$

Solve: $7x \equiv 1 \pmod{26}$

Solve: $7x \equiv 1 \pmod{26}$

(1) Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

Solve: $7x \equiv 1 \pmod{26}$

(1) Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

(2) Solve the equations for r in the tableau.

a = b * q + r
26 = 7 * 3 + 5
7 = 5 * 1 + 2
5 = 2 * 2 + 1

$$r = a - b * q$$

$$5 = 26 - 7 * 3$$

$$2 = 7 - 5 * 1$$

$$1 = 5 - 2 * 2$$

Solve: $7x \equiv 1 \pmod{26}$

(1) Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

(2) Solve the equations for r in the tableau.

a = b * q + r 26 = 7 * 3 + 5 7 = 5 * 1 + 25 = 2 * 2 + 1

$$r = a - b * q$$

$$5 = 26 - 7 * 3$$

$$2 = 7 - 5 * 1$$

$$1 = 5 - 2 * 2$$

③ Back substitute the equations for r.

$$= 5 - 2 * (7 - 5 * 1)$$

= (-2) * 7 + 3 * 5
= (-2) * 7 + 3 * (26 - 7 * 3)
= (-11) * 7 + 3 * 26

Solve: $7x \equiv 1 \pmod{26}$

① Compute GCD and keep the tableau.

$$GCD(26, 7) = GCD(7, 5) = GCD(5, 2)$$

= $GCD(2, 1) = GCD(1, 0)$
= 1

(2) Solve the equations for r in the tableau.

a = b * q + r 26 = 7 * 3 + 5 7 = 5 * 1 + 25 = 2 * 2 + 1

$$r = a - b * q$$

$$5 = 26 - 7 * 3$$

$$2 = 7 - 5 * 1$$

$$1 = 5 - 2 * 2$$

③ Back substitute the equations for r.

$$l = 5 - 2 * (7 - 5 * 1)$$

= (-2) * 7 + 3 * 5
= (-2) * 7 + 3 * (26 - 7 * 3)
= (-11) * 7 + 3 * 26

(4) Solve for x.

- Multiplicative inverse of 7 mod 26
 (-11) mod 26 = 15
- So, x = 26k + 15 for $k \in \mathbb{Z}$.

Summary

Every positive integer p > 1 is either prime or composite. p is prime if its only factors are p and 1. Otherwise, p is composite.

GCD(a, b) is the greatest integer that divides both a and b. It can be computed efficiently using the Euclidean algorithm.

By Bézout's Theorem, GCD(a, b) = sa + tb for some integers s, t. s, t can be computed using the extended Euclidean algorithm. If GCD(a, b) = 1, $s \mod b$ is the multiplicative inverse of a modulo b.