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TopicsTopics
Modular arithmetic basics

Review of .
Modular arithmetic properties

Congruence, addition, multiplication, proofs.
Modular arithmetic and integer representations

Unsigned, sign-magnitude, and two’s complement representation.
Applications of modular arithmetic

Hashing, pseudo-random numbers, ciphers.

Lecture 11

2

https://courses.cs.washington.edu/courses/cse311/20sp/lectures/lecture11.html


Modular arithmetic basicsModular arithmetic basics
Review of .Lecture 11

3

https://courses.cs.washington.edu/courses/cse311/20sp/lectures/lecture11.html


Key definition: divisibilityKey definition: divisibility

Definition:  divides , written as .
For , .

We also say that  is divisible by  when .

a b a|b

a ∈ ℤ, b ∈ ℤ a|b ↔ ∃k ∈ ℤ. b = ka

b a a|b
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Key theorem: division theoremKey theorem: division theorem

Division theorem
For  with ,
there exist unique integers  with 
such that .

That is, if we divide  by , we get a unique

quotient  and
non-negative remainder .

So, .

a ∈ ℤ, d ∈ ℤ d > 0

q, r 0 ≤ r < d

a = dq + r

a d

q = a div d

r = a mod d

a = d(a div d) + (a mod d)

5



Modular arithmetic propertiesModular arithmetic properties
Congruence, addition, multiplication, proofs.
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Congruence modulo a positive integerCongruence modulo a positive integer

Definition:  is congruent to  modulo , written as 
For  with , 

We read “ ” as “  is congruent to  modulo ”, which means 
.

So, “congruence modulo ” is a predicate on integers, written using the
notation “ ”.

a b m a ≡ b (mod m)

a, b, m ∈ ℤ m > 0 a ≡ b (mod m) ↔ m|(a − b)

a ≡ b (mod m) a b m

m|(a − b)

m

≡ (mod m)
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that .  

  
 

 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m)

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. 

  
 

 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides.  

 
 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . 

 
 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . 

 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km

b + km = qm + r b = (q − k)m + r

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . 

 
  

 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km

b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . 
  

 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km

b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m

a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km

b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m

a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ

a − b = (mq + (a mod m)) − (ms + (b mod m))
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km

b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m

a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ

a − b = (mq + (a mod m)) − (ms + (b mod m)) = m(q − s) + (a mod m − b mod m)
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

, since . 

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km

b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m

a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ

a − b = (mq + (a mod m)) − (ms + (b mod m)) = m(q − s) + (a mod m − b mod m)

= m(q − s) a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

, since . Therefore,  and so .

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km

k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km

b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m

a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ

a − b = (mq + (a mod m)) − (ms + (b mod m)) = m(q − s) + (a mod m − b mod m)

= m(q − s) a mod m = b mod m m|(a − b) a ≡ b (mod m)
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The The  function vs the  function vs the  predicate predicate
The  function takes any  and maps it to a remainder 

.

In other words,  places all integers that have the same remainder
modulo  into the same “group” (a.k.a. “congruence class”).

The  predicate compares  and returns true if and only if 
 and  are in the same group according to the  function.

  modmod  mm   ≡≡ ((modmod mm))

 mod m a ∈ ℤ

a mod m ∈ {0, 1, … , m − 1}

 mod m

m

≡ (mod m) a, b ∈ ℤ

a b  mod m
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Modular addition propertyModular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)
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Modular addition propertyModular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . 

 
 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)
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Modular addition propertyModular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . 

 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm
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Modular addition propertyModular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . Adding
these equations together, we get . 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

(a + c) − (b + d) = m(j + k)
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Modular addition propertyModular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . Adding
these equations together, we get . Reapplying
the definition of congruence, we get that .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

(a + c) − (b + d) = m(j + k)

(a + c) ≡ (b + d) (mod m)
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Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)
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Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . 

 
 

 
 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

11



Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . 

 
 

 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

11



Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . So, 

 and . 
 

 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

a = km + b c = jm + b
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Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . So, 

 and . Multiplying these equations together, we get 
. 

 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

a = km + b c = jm + b

ac = (km + b)(jm + d) = kj + kmd + bjm + bdm2
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Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . So, 

 and . Multiplying these equations together, we get 
. Rearranging gives us 

. 

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

a = km + b c = jm + b

ac = (km + b)(jm + d) = kj + kmd + bjm + bdm2

ac − bd = m(kjm + kd + bj)
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Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and . So, 

 and . Multiplying these equations together, we get 
. Rearranging gives us 

. Reapplying the definition of congruence, we
get that .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

a = km + b c = jm + b

ac = (km + b)(jm + d) = kj + kmd + bjm + bdm2

ac − bd = m(kjm + kd + bj)

ac ≡ bd (mod m)
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n ≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n ≡ 1 (mod 2) → ≡ 1 (mod 4)n2
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). 

 
 

Case 2 (  is odd). 
 

 

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n ≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n ≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n

n
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Let , and prove that  or .
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . 

 

Case 2 (  is odd). 
 

 

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12
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= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42
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n = 2k k

n
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .
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Proof by cases:
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Let , and prove that  or .
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Proof by cases:
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition of
congruence, .
Case 2 (  is odd). Suppose .
Then  for some integer . 
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition of
congruence, .
Case 2 (  is odd). Suppose .
Then  for some integer . So 
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n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02
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= 16 ≡ 0 (mod 4)42

n ≡ 0 (mod 2) → ≡ 0 (mod 4)n2
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition of
congruence, .
Case 2 (  is odd). Suppose .
Then  for some integer . So 

  
. Therefore, by definition of

congruence, .

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n ≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n ≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n ≡ 0 (mod 2)

n = 2k k

= (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n n ≡ 1 (mod 2)

n = 2k + 1 k

= (2k + 1 = 4 + 4k + 1n2 )2 k2 =

4( + k) + 1k2

≡ 1 (mod 4)n2
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Modular arithmetic and integer representationsModular arithmetic and integer representations
Unsigned, sign-magnitude, and two’s complement representation.

13



Unsigned integer representationUnsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

x n

x = ∑n−1
i=0 bi2

i ∈ {0, 1}bi

…bn−1 b2b1b0

14



Unsigned integer representationUnsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

Examples:

So for :

x n

x = ∑n−1
i=0 bi2

i ∈ {0, 1}bi

…bn−1 b2b1b0

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

99 = 0110 0011

18 = 0001 0010
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Unsigned integer representationUnsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

Examples:

So for :

x n

x = ∑n−1
i=0 bi2

i ∈ {0, 1}bi

…bn−1 b2b1b0

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

99 = 0110 0011

18 = 0001 0010

This works for unsigned integers.
How do we represented signed
integers?

14



Sign-magnitude integer representationSign-magnitude integer representation

If , represent  with  bits as follows:
Use the first bit as the sign (0 for positive and 1 for negative), and
the remaining  bits as the (unsigned) value.

Examples:

So for :

− < x <2n−1 2n−1 x n

n − 1

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

   99 = 0110 0011

−18 = 1001 0010
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Sign-magnitude integer representationSign-magnitude integer representation

If , represent  with  bits as follows:
Use the first bit as the sign (0 for positive and 1 for negative), and
the remaining  bits as the (unsigned) value.

Examples:

So for :

− < x <2n−1 2n−1 x n

n − 1

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

   99 = 0110 0011

−18 = 1001 0010

   81 = 0101 0001

The problem with this representation is
that our standard arithmetic algorithms
no longer work, e.g., adding the
representation of -18 and 99 doesn’t give
the representation of 81.
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Two’s complement integer representationTwo’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

x n

0 ≤ x < 2n−1 n x

− ≤ x < 02n−1 n − |x|2n

16



Two’s complement integer representationTwo’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

Key property:
Two’s complement representation of any number  is equivalent to 
so arithmetic works .

x n

0 ≤ x < 2n−1 n x

− ≤ x < 02n−1 n − |x|2n

y y mod 2n

 mod 2n
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Two’s complement integer representationTwo’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

Key property:
Two’s complement representation of any number  is equivalent to 
so arithmetic works .

Examples:
So for :

x n

0 ≤ x < 2n−1 n x

− ≤ x < 02n−1 n − |x|2n

y y mod 2n

 mod 2n

99 = 64 + 32 + 2 + 1

18 = 16 + 2

− 18 = 256 − 18 = 238 = 128 + 64 + 32 + 8 + 4 + 228

81 = 64 + 16 + 1

n = 8

   99 = 0110 0011

−18 = 1110 1110

   81 = 0101 0001

16



Computing the two’s complement representationComputing the two’s complement representation

For ,  is represented using the -bit unsigned representation
of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

− ≤ x < 02n−1 x n

− |x|2n

n |x|

|x| − 1 − |x|2n

− |x|2n

x + x
⎯⎯⎯ − 12n

= − 1 − xx
⎯⎯⎯

2n + 1 = − xx
⎯⎯⎯

2n
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Computing the two’s complement representationComputing the two’s complement representation

For ,  is represented using the -bit unsigned representation
of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement

− ≤ x < 02n−1 x n

− |x|2n

n |x|

|x| − 1 − |x|2n

− |x|2n

x + x
⎯⎯⎯ − 12n

= − 1 − xx
⎯⎯⎯

2n + 1 = − xx
⎯⎯⎯

2n

17



Computing the two’s complement representationComputing the two’s complement representation

For ,  is represented using the -bit unsigned representation
of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement
18 in 8-bit unsigned: 

− ≤ x < 02n−1 x n

− |x|2n

n |x|

|x| − 1 − |x|2n

− |x|2n

x + x
⎯⎯⎯ − 12n

= − 1 − xx
⎯⎯⎯

2n + 1 = − xx
⎯⎯⎯

2n

0001 0010

17



Computing the two’s complement representationComputing the two’s complement representation

For ,  is represented using the -bit unsigned representation
of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement
18 in 8-bit unsigned: 
Flip the bits: 

− ≤ x < 02n−1 x n

− |x|2n

n |x|

|x| − 1 − |x|2n

− |x|2n

x + x
⎯⎯⎯ − 12n

= − 1 − xx
⎯⎯⎯

2n + 1 = − xx
⎯⎯⎯

2n

0001 0010

1110 1101

17



Computing the two’s complement representationComputing the two’s complement representation

For ,  is represented using the -bit unsigned representation
of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement
18 in 8-bit unsigned: 
Flip the bits: 
Add 1: 

− ≤ x < 02n−1 x n

− |x|2n

n |x|

|x| − 1 − |x|2n

− |x|2n

x + x
⎯⎯⎯ − 12n

= − 1 − xx
⎯⎯⎯

2n + 1 = − xx
⎯⎯⎯

2n

0001 0010

1110 1101

1110 1110

17



Applications of modular arithmeticApplications of modular arithmetic
Hashing, pseudo-random numbers, ciphers.
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HashingHashing

Problem:
We want to map a small number of data values from a large domain 

 into a small set of locations  to be able to
quickly check if a value is present.

Solution:
Compute  for a prime  close to .
Or, compute  for a prime  close to .

This approach depends on all of the bits of data the data.
Helps avoid collisions due to similar values.
But need to manage them if they occur.

{0, 1, … , M − 1} {0, 1, … , n − 1}

hash(x) = x mod p p n

hash(x) = ax + b mod p p n

19



Pseudo-random number generationPseudo-random number generation

Choose  randomly and  carefully to produce a sequence of ’s.

Linear Congruential method
= (a + c) mod mxn+1 xn

x0 a, c, m xn

20



Pseudo-random number generationPseudo-random number generation

Choose  randomly and  carefully to produce a sequence of ’s.

Example
 from BSD

Linear Congruential method
= (a + c) mod mxn+1 xn

x0 a, c, m xn

a = 1103515245, c = 12345, m = 231

= 311x0

= 1743353508, = 1197845517, = 1069836226, …x1 x2 x3

20



Simple ciphersSimple ciphers

Treat letters as numbers: A = 0, B = 1, …
Ceasar or shi� cipher

f (p) = (p + k) mod 26

(p) = (p − k) mod 26f −1

More general version
f (p) = (ap + b) mod 26

(p) = ( (p − b)) mod 26f −1 a−1

21

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Affine_cipher


SummarySummary
Modular arithmetic is arithmetic over a finite domain.

Key notions are divisibility and congruence modulo .
Thanks to addition and multiplication properties, modular arithmetic supports
familiar algebraic manipulations such as adding and multiplying together 

 equations.
Modular arithmetic is the basis of computing.

Used with two’s complement representation to implement computer
arithmetic.
Also used in hashing, pseudo-random number generation, and cryptography.

m

≡ (mod m)
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