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TopicsTopics
Sets and set operations

A quick wrap-up of .
Modular arithmetic basics

Arithmetic over a finite domain (a.k.a computer arithmetic).
Modular arithmetic properties

Congruence, addition, multiplication, proofs.
Modular arithmetic and integer representations

Unsigned, sign-magnitude, and two’s complement representation.
Applications of modular arithmetic

Hashing, pseudo-random numbers, ciphers.
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Sets and set operationsSets and set operations

A set is a collection of elements.
Write  (or ) to say that  is (or isn’t) an element in the set .
The order of elements doesn’t matter, and duplicates don’t matter.

Sets  and  are equal if they have the same elements.

 is a subset of  if every element of  is also in .

Sets can be built from predicates or using set operations.

a ∈ B a ∉ B a B

A B

A = B ≡ ∀x. x ∈ A ↔ x ∈ B

A B A B

A ⊆ B ≡ ∀x. x ∈ A → x ∈ B

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}

A ∖ B = {x : (x ∈ A) ∧ (x ∉ B)}

A ⊕ B = {x : (x ∈ A) ⊕ (x ∈ B)}

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
⎯ ⎯⎯⎯
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This is Boolean algebra againThis is Boolean algebra again

Union  is defined using .

Intersection  is defined using .

Complement works like .

∪ ∨
A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}

∩ ∧
A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}

¬

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
⎯ ⎯⎯⎯

This means that all equivalences from Boolean algebra translate directly into set
theory, and you can use them in your proofs!
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More setsMore sets
Power set, Cartesian product, and Russell’s paradox.
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Power setPower set

Power set of a set  is the set of all subsets of .

Examples
Let .

 
 

A A

(A) = {B : B ⊆ A}

Days = {M, W, F}

(Days) =

(∅) =
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Power setPower set

Power set of a set  is the set of all subsets of .

Examples
Let .

 
 

A A

(A) = {B : B ⊆ A}

Days = {M, W, F}

(Days) = {∅, {M}, {W}, {F}, {M, W}, {M, F}, {W, F}, {M, W, F}}

(∅) =
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Power setPower set

Power set of a set  is the set of all subsets of .

Examples
Let .

 
 

A A

(A) = {B : B ⊆ A}

Days = {M, W, F}

(Days) = {∅, {M}, {W}, {F}, {M, W}, {M, F}, {W, F}, {M, W, F}}

(∅) = {∅} ≠ ∅
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B =
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  .

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  .

 

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

A × ∅ =
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  .

 .

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

A × ∅ = {(a, b) : a ∈ A ∧ b ∈ ∅} = {(a, b) : a ∈ A ∧ 𝖥} = ∅
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.S

S = {x : x ∉ x}
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.

S

S = {x : x ∉ x}

S
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.
Suppose that . Then, by definition of , , which is a contradiction.

S

S = {x : x ∉ x}

S

S ∈ S S S ∉ S
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.
Suppose that . Then, by definition of , , which is a contradiction.
Suppose that . Then, by definition of , , which is a contradiction
too.

S

S = {x : x ∉ x}

S

S ∈ S S S ∉ S

S ∉ S S S ∈ S
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.
Suppose that . Then, by definition of , , which is a contradiction.
Suppose that . Then, by definition of , , which is a contradiction
too.

To avoid the paradox …
Define  with respect to a universe of discourse.

With this definition,  and there is no contradiction because .

S

S = {x : x ∉ x}

S

S ∈ S S S ∉ S

S ∉ S S S ∈ S

S

S = {x ∈ U : x ∉ x}

S ∉ S S ∉ U
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Working with setsWorking with sets
Representing sets as bitvectors and applications of bitvectors.
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

Given characteristic vectors for  and , what is the vector for
 
 

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B

A B

A ∪ B =

A ∩ B =
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

Given characteristic vectors for  and , what is the vector for
 
 

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B

A B

A ∪ B = ( + ) … ( + )a1 b1 an bn

A ∩ B =
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

Given characteristic vectors for  and , what is the vector for
 
 

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B

A B

A ∪ B = ( + ) … ( + )a1 b1 an bn

A ∩ B = ( ⋅ ) … ( ⋅ )a1 b1 an bn
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Unix/Linux file permissionsUnix/Linux file permissions

$ ls -l 
drwxr-xr-x ... Documents/ 
-rw-r--r-- ... file1 

Permissions maintained as bitvectors.
Letter means the bit is 1.
”-“ means the bit is zero.
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Bitwise operationsBitwise operations

 

 

Note that .

01101101

∨ 00110111

01111111

z = x | y

00101010

∧ 00001111

00001010

z = x & y

01101101

⊕ 00110111

01011010

z = x ^ y (x ⊕ y) ⊕ y = x
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Private key cryptographyPrivate key cryptography
Alice wants to communicate a message  secretly to Bob, so that
eavesdropper Eve who sees their conversation can’t understand .

Alice and Bob can get together ahead of time and privately share a secret key 
.

How can they communicate securely in this setting?

Sender
 (Alice)

plaintext
message key

encrypt
Receiver
 (Bob)

plaintext
messagekey

decrypt
cyphertext

Eavesdropper
 (Eve)

m

m

K
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One-time padOne-time pad

Alice and Bob privately share a random -bitvector .
Eve doesn’t know .

Later, Alice has -bit message  to send to Bob.
Alice computes .
Alice sends  to Bob.
Bob computes , which is .

Eve can’t figure out  from  unless she can guess .
And that’s very unlikely for large  …

n K

K

n m

C = m ⊕ K

C

m = C ⊕ K (m ⊕ K) ⊕ K = m

m C K

n
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Modular arithmetic basicsModular arithmetic basics
Arithmetic over a finite domain (a.k.a computer arithmetic).
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Modular arithmetic in actionModular arithmetic in action
What does  output?this Java program

public class Seconds { 
   final static int SEC_IN_YEAR = 364*24*60*60; 
   public static void main(String args[]) { 
       System.out.println("Number of seconds in 10100 years: " + 
                          (SEC_IN_YEAR*10100)); 
   }
}

17

http://tpcg.io/pMyJWP


Modular arithmetic in actionModular arithmetic in action
What does  output?this Java program

public class Seconds { 
   final static int SEC_IN_YEAR = 364*24*60*60; 
   public static void main(String args[]) { 
       System.out.println("Number of seconds in 10100 years: " + 
                          (SEC_IN_YEAR*10100)); 
   }
}

$javac Test.java 
$java -Xmx128M -Xms16M Test 
Number of seconds in 10100 years: -186619904 

You’ll recognize this as “integer overflow.” It happens because computers use
modular arithmetic to operate on finite integer data types, such as int.
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It all starts with divisibility …It all starts with divisibility …
Divisibility is the core concept behind modular arithmetic.

Definition:  divides , written as .
For , .

a b a|b
a ∈ ℤ, b ∈ ℤ a|b ↔ ∃k ∈ ℤ. b = ka

18



It all starts with divisibility …It all starts with divisibility …
Divisibility is the core concept behind modular arithmetic.

Definition:  divides , written as .
For , .

Examples: which of the following are true and which are false?

a b a|b
a ∈ ℤ, b ∈ ℤ a|b ↔ ∃k ∈ ℤ. b = ka

5|1

1|5

25|5

5|25

5|0

0|5

2|3

3|2
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a b a|b
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It all starts with divisibility …It all starts with divisibility …
Divisibility is the core concept behind modular arithmetic.

Definition:  divides , written as .
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Examples: which of the following are true and which are false?
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a ∈ ℤ, b ∈ ℤ a|b ↔ ∃k ∈ ℤ. b = ka

5|1 𝖥

1|5 𝖳
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Division theoremDivision theorem

Division theorem
For  with ,
there exist unique integers  with 
such that .

If we divide  by , we get a unique quotient  and non-negative
remainder .

a ∈ ℤ, d ∈ ℤ d > 0

q, r 0 ≤ r < d

a = dq + r

a d q = a div d

r = a mod d
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Division theoremDivision theorem

Division theorem
For  with ,
there exist unique integers  with 
such that .

If we divide  by , we get a unique quotient  and non-negative
remainder .

Note that  even if , so .

a ∈ ℤ, d ∈ ℤ d > 0

q, r 0 ≤ r < d

a = dq + r

a d q = a div d

r = a mod d

r ≥ 0 a < 0 mod is not %

public class NotMod { 
   public static void main(String args[]) { 
       System.out.println("-5 mod 2 = 1."); 
       System.out.println("-5 % 2 = " + (-5 % 2)); 
   }
}

$javac NotMod.java 
$java -Xmx128M -Xms16M NotMod 
-5 mod 2 = 1. 
-5 % 2 = -1 
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Example: arithmetic mod 7Example: arithmetic mod 7

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

a b = (a + b) mod 7+7

+

a b = (a × b) mod 7×7

∗
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Modular arithmetic propertiesModular arithmetic properties
Congruence, addition, multiplication, proofs.
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Congruence modulo a positive integerCongruence modulo a positive integer

Definition:  is congruent to  modulo , written as 
For  with , 

a b m a ≡ b (mod m)

a, b, m ∈ ℤ m > 0 a ≡ b (mod m) ↔ m|(a − b)
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Congruence modulo a positive integerCongruence modulo a positive integer

Definition:  is congruent to  modulo , written as 
For  with , 

Examples: what do these mean and when are they true?

a b m a ≡ b (mod m)

a, b, m ∈ ℤ m > 0 a ≡ b (mod m) ↔ m|(a − b)

x ≡ 0 (mod 2)

−1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)
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Congruence modulo a positive integerCongruence modulo a positive integer

Definition:  is congruent to  modulo , written as 
For  with , 

Examples: what do these mean and when are they true?

True for every  that is divisible by 2, i.e., even.

a b m a ≡ b (mod m)

a, b, m ∈ ℤ m > 0 a ≡ b (mod m) ↔ m|(a − b)

x ≡ 0 (mod 2)

x

−1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)
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Congruence modulo a positive integerCongruence modulo a positive integer

Definition:  is congruent to  modulo , written as 
For  with , 

Examples: what do these mean and when are they true?

True for every  that is divisible by 2, i.e., even.

True because  is divisible by 5.

a b m a ≡ b (mod m)

a, b, m ∈ ℤ m > 0 a ≡ b (mod m) ↔ m|(a − b)

x ≡ 0 (mod 2)

x

−1 ≡ 19 (mod 5)

−1 − 19 = −20

y ≡ 2 (mod 7)

22



Congruence modulo a positive integerCongruence modulo a positive integer

Definition:  is congruent to  modulo , written as 
For  with , 

Examples: what do these mean and when are they true?

True for every  that is divisible by 2, i.e., even.

True because  is divisible by 5.

True for every  of the form  where .

a b m a ≡ b (mod m)

a, b, m ∈ ℤ m > 0 a ≡ b (mod m) ↔ m|(a − b)

x ≡ 0 (mod 2)

x

−1 ≡ 19 (mod 5)

−1 − 19 = −20

y ≡ 2 (mod 7)

y y = 2 + 7k k ∈ ℤ
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that .

Suppose that .

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m)

a mod m = b mod m

23



Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that .

Then  by definition of congruence. So  for some  by definition
of divides. Therefore, . Taking both sides modulo , we get 

Suppose that .

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m)
m|a − b a − b = km k ∈ ℤ

a = b + km m

a mod m = (b + km) mod m = b mod m.

a mod m = b mod m
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Congruence and equalityCongruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that .

Then  by definition of congruence. So  for some  by definition
of divides. Therefore, . Taking both sides modulo , we get 

Suppose that .
By the division theorem,  and  for some 

. Then,     
  , since . Therefore, 

 and so .

a, b, m ∈ ℤ m > 0

a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m)
m|a − b a − b = km k ∈ ℤ

a = b + km m

a mod m = (b + km) mod m = b mod m.

a mod m = b mod m
a = mq + (a mod m) b = ms + (b mod m)

q, s ∈ ℤ a − b = (mq + (a mod m)) − (ms + (b mod m)) =

m(q − s) + (a mod m − b mod m) = m(q − s) a mod m = b mod m

m|(a − b) a ≡ b (mod m)
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The The  function vs the  function vs the  predicate predicate
The  function takes any  and maps it to a remainder 

.

In other words,  places all integers that have the same remainder
modulo  into the same “group” (a.k.a. “congruence class”).

The  predicate compares  and returns true if and only if 
 and  are in the same group according to the  function.

  modmod  mm   ≡≡ ((modmod mm))

 mod m a ∈ ℤ

a mod m ∈ {0, 1, … , m − 1}

 mod m

m

≡ (mod m) a, b ∈ ℤ

a b  mod m
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Modular addition propertyModular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)
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Modular addition propertyModular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By the definition of
congruence, there are  and  such that  and . Adding
these equations together, we get . Reapplying
the definition of congruence, we get that .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

(a + c) − (b + d) = m(j + k)

(a + c) ≡ (b + d) (mod m)
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Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)
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Modular multiplication propertyModular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By the definition of
congruence, there are  and  such that  and . So, 

 and . Multiplying these equations together, we get 
. Rearranging gives us 

. Reapplying the definition of congruence, we
get that .

m m ∈ ℤ m > 0

a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

k j a − b = km c − d = jm

a = km + b c = jm + b

ac = (km + b)(jm + d) = kj + kmd + bjm + bdm2

ac − bd = m(kjm + kd + bj)

ac ≡ bd (mod m)
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

27
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Let , and prove that  or .

Let’s look at a few examples:

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even):

Case 2 (  is odd):

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n ≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n ≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n

n
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even):

Suppose . Then  for some
integer . So . Therefore, by
definition of congruence, .

Case 2 (  is odd):

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n ≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n ≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n
n ≡ 0 (mod 2) n = 2k

k = (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n
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Example: a proof using modular arithmeticExample: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even):

Suppose . Then  for some
integer . So . Therefore, by
definition of congruence, .

Case 2 (  is odd):
Suppose . Then  for some
integer . So   

. Therefore, by definition of
congruence, .

n ∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n ≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n ≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n
n ≡ 0 (mod 2) n = 2k

k = (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n
n ≡ 1 (mod 2) n = 2k + 1

k = (2k + 1 = 4 + 4k + 1n2 )2 k2 =

4( + k) + 1k2

≡ 1 (mod 4)n2
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Modular arithmetic and integer representationsModular arithmetic and integer representations
Unsigned, sign-magnitude, and two’s complement representation.
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Unsigned integer representationUnsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

x n

x = ∑n−1
i=0 bi2

i ∈ {0, 1}bi

…bn−1 b2b1b0
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Unsigned integer representationUnsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

Examples:

So for :

x n

x = ∑n−1
i=0 bi2

i ∈ {0, 1}bi

…bn−1 b2b1b0

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

99 = 0110 0011

18 = 0001 0010
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Unsigned integer representationUnsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

Examples:

So for :

x n

x = ∑n−1
i=0 bi2

i ∈ {0, 1}bi

…bn−1 b2b1b0

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

99 = 0110 0011

18 = 0001 0010

This works for unsigned integers.
How do we represented signed
integers?
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Sign-magnitude integer representationSign-magnitude integer representation

If , represent  with  bits as follows:
Use the first bit as the sign (0 for positive and 1 for negative), and
the remaining  bits as the (unsigned) value.

Examples:

So for :

− < x <2n−1 2n−1 x n

n − 1

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

   99 = 0110 0011

−18 = 1001 0010
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Sign-magnitude integer representationSign-magnitude integer representation

If , represent  with  bits as follows:
Use the first bit as the sign (0 for positive and 1 for negative), and
the remaining  bits as the (unsigned) value.

Examples:

So for :

− < x <2n−1 2n−1 x n

n − 1

99 = 64 + 32 + 2 + 1

18 = 16 + 2

n = 8

   99 = 0110 0011

−18 = 1001 0010

   81 = 0101 0001

The problem with this representation is
that our standard arithmetic algorithms
no longer work, e.g., adding the
representation of -18 and 99 doesn’t give
the representation of 81.
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Two’s complement integer representationTwo’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

x n

0 ≤ x < 2n−1 n x

− ≤ x < 02n−1 n − |x|2n
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Two’s complement integer representationTwo’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

Key property:
Two’s complement representation of any number  is equivalent to 
so arithmetic works .

x n

0 ≤ x < 2n−1 n x

− ≤ x < 02n−1 n − |x|2n

y y mod 2n

 mod 2n
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Two’s complement integer representationTwo’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

Key property:
Two’s complement representation of any number  is equivalent to 
so arithmetic works .

Examples:
So for :

x n

0 ≤ x < 2n−1 n x

− ≤ x < 02n−1 n − |x|2n

y y mod 2n

 mod 2n

99 = 64 + 32 + 2 + 1

18 = 16 + 2

− 18 = 256 − 18 = 238 = 128 + 64 + 32 + 8 + 4 + 228

81 = 64 + 16 + 1

n = 8

   99 = 0110 0011

−18 = 1110 1110

   81 = 0101 0001

31



Computing the two’s complement representationComputing the two’s complement representation

For ,  is represented using the -bit unsigned representation
of .

Here is an easy way to compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .

This works because the string of all 1’s represents .
Add 1 to get .

− ≤ x < 02n−1 x n

− |x|2n

n |x|

|x| − 1 − |x|2n

− 12n

− |x|2n

32



Applications of modular arithmeticApplications of modular arithmetic
Hashing, pseudo-random numbers, ciphers.
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HashingHashing

Problem:
We want to map a small number of data values from a large domain 

 into a small set of locations  to be able to
quickly check if a value is present.

Solution:
Compute  for a prime  close to .
Or, compute  for a prime  close to .

This approach depends on all of the bits of data the data.
Helps avoid collisions due to similar values.
But need to manage them if they occur.

{0, 1, … , M − 1} {0, 1, … , n − 1}

hash(x) = x mod p p n

hash(x) = ax + b mod p p n
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Pseudo-random number generationPseudo-random number generation

Choose random  and produce a long sequences of ’s.

Linear Congruential method
= (a + c) mod mxn+1 xn

, a, c, mx0 xn
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Simple ciphersSimple ciphers

Ceasar or shi� cipher:
Treat letters as numbers: A = 0, B = 1, …

More general version:

f (p) = (p + k) mod 26

(p) = (p − k) mod 26f −1

f (p) = (ap + b) mod 26

(p) = ( (p − b)) mod 26f −1 a−1
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SummarySummary
Sets can be represented efficiently using bitvectors.

This representation is used heavily in the real world.
With this representation, set operations reduce to fast bitwise operations.

Modular arithmetic is arithmetic over a finite domain.
Key notions are divisibility and congruency .

Modular arithmetic is the basis of computing.
Used with two’s complement representation to implement computer
arithmetic.
Also used in hashing, pseudo-random number generation, and cryptography.

 mod m
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