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TopicsTopics
English proofs and proof strategies

A quick wrap-up of .
Set theory basics

Set membership ( ), subset ( ), and equality ( ).
Set operations

Set operations and their relation to Boolean algebra.
More sets

Power set, Cartesian product, and Russell’s paradox.
Working with sets

Representing sets as bitvectors and applications of bitvectors.
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English proofs and proof strategiesEnglish proofs and proof strategies
A quick wrap-up of .Lecture 09
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Benefits of English proofsBenefits of English proofs

This is more work to write

than this

Higher level language is easier
because it skips details.

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c
%e = add %arr, %i
store %e, %d

arr[i] = arr[(i+1) % n];
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Benefits of English proofsBenefits of English proofs

This is more work to write

than this

Higher level language is easier
because it skips details.

Formal proofs are the low level
language: each part must be spelled out
in precise detail.

English proofs are the high level
language.

An English proof is correct if the reader is
convinced they can “compile” it to a
formal proof if necessary.

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c
%e = add %arr, %i
store %e, %d

arr[i] = arr[(i+1) % n];

4



Proof strategiesProof strategies
Sometimes, it’s too hard to prove a theorem directly using inference rules,
equivalences, and domain properties.

When that’s the case, try one of the following alternative strategies:

Proof by contrapositive,
Disproof by counterexamples, and
Proof by contradiction.
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Proof by contrapositiveProof by contrapositive
If we assume  and derive , then we have proven that , which
is equivalent to proving .

1.1. Assumption
   
1.3.  

2. Direct Proof Rule
3. Contrapositive: 2

¬q ¬p ¬q → ¬p

p → q

¬q

…

¬p

¬q → ¬p

p → q
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CounterexamplesCounterexamples

To disprove , prove .
Works by DeMorgan’s Law: .
All we need to do is find an  for which  is false.
This  is called a counterexample.

Example: disprove that “Every prime number is odd”.
2 is a prime number that is not odd.

∀x. P(x) ∃x. ¬P(x)

¬∀x. P(x) ≡ ∃x. ¬P(x)

x P(x)

x
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Proof by contradictionProof by contradiction
If we assume  and derive  (a contradiction), then we have proven .

1.1. Assumption
   
1.3.  

2. Direct Proof Rule
3. Law of Implication: 2
4. Identity: 3

p 𝖥 ¬p

p

…

𝖥

p → 𝖥

¬p ∨ 𝖥

¬p
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: .

Proof by contradiction

¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x))
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: .

Proof by contradiction
Let  be an arbitrary integer and suppose that it is both even and odd.

¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x))

x
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: .

Proof by contradiction
Let  be an arbitrary integer and suppose that it is both even and odd.
Then  for some integer  and  for some integer .

¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x))

x

x = 2a a x = 2b + 1 b
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: .

Proof by contradiction
Let  be an arbitrary integer and suppose that it is both even and odd.
Then  for some integer  and  for some integer .
Therefore  and hence .

¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x))

x

x = 2a a x = 2b + 1 b

2a = 2b + 1 a = b + 1
2
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: .

Proof by contradiction
Let  be an arbitrary integer and suppose that it is both even and odd.
Then  for some integer  and  for some integer .
Therefore  and hence .
But two integers cannot differ by  so this is a contradiction.

¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x))

x

x = 2a a x = 2b + 1 b

2a = 2b + 1 a = b + 1
2

1
2
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: .

Proof by contradiction
Let  be an arbitrary integer and suppose that it is both even and odd.
Then  for some integer  and  for some integer .
Therefore  and hence .
But two integers cannot differ by  so this is a contradiction.
Therefore no integer is both even and odd. 

¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x))

x

x = 2a a x = 2b + 1 b

2a = 2b + 1 a = b + 1
2

1
2

◻
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Fun strategy: proof by computerFun strategy: proof by computer
 an automated theorem prover:Use

; No integer is both even and odd. 
 
(define-fun even ((x Int)) Bool 
  (exists ((y Int)) (= x (* 2 y)))) 
 
(define-fun odd ((x Int)) Bool 
  (exists ((y Int)) (= x (+ (* 2 y) 1)))) 
 
(define-fun claim () Bool 
  (not (exists ((x Int)) (and (even x) (odd x))))) 
 
(assert (not claim)) ; proof by contradiction 
 
(check-sat)
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Fun strategy: proof by computerFun strategy: proof by computer
 an automated theorem prover:

While this example works, proofs of arbitrary formulas in predicate logic
cannot be automated. But interactive theorem provers can still help by
checking your formal proof and filling in some low-level details for you.

Use

; No integer is both even and odd. 
 
(define-fun even ((x Int)) Bool 
  (exists ((y Int)) (= x (* 2 y)))) 
 
(define-fun odd ((x Int)) Bool 
  (exists ((y Int)) (= x (+ (* 2 y) 1)))) 
 
(define-fun claim () Bool 
  (not (exists ((x Int)) (and (even x) (odd x))))) 
 
(assert (not claim)) ; proof by contradiction 
 
(check-sat)
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Fun fact: counterexamples & contradiction in verificationFun fact: counterexamples & contradiction in verification

Automated verifiers work by counterexample and contradiction proofs.
Recall that program verification involves proving that a program  satisfies a
specification  on all inputs : , where  and  are formulas
encoding the semantics of  and .

P

S x ∀x. p(x) → s(x) p s

P S
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If the prover finds a counterexample, we know the program is incorrect.
The counterexample is a concrete input (test case) on which the program
violates the spec.
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Fun fact: counterexamples & contradiction in verificationFun fact: counterexamples & contradiction in verification

Automated verifiers work by counterexample and contradiction proofs.
Recall that program verification involves proving that a program  satisfies a
specification  on all inputs : , where  and  are formulas
encoding the semantics of  and .

The program verifier sends the formula  to the prover.
.

If the prover finds a counterexample, we know the program is incorrect.
The counterexample is a concrete input (test case) on which the program
violates the spec.

If no counterexample exists, we know the program is correct.
Because this is proof by contradiction! The prover assumed 
and arrived at false (“unsat”).

P

S x ∀x. p(x) → s(x) p s

P S

∃x. p(x) ∧ ¬s(x)
¬∀x. p(x) → s(x) ≡ ∃x. ¬(p(x) → s(x)) ≡ ∃x. ¬(¬p(x) ∨ s(x)) ≡ ∃x. p(x) ∧ ¬s(x)

∃x. p(x) ∧ ¬s(x)
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Set theory basicsSet theory basics
Set membership ( ), subset ( ), and equality ( ).∈ ⊆ =
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What is a set?What is a set?

A set is a collection of objects called elements.
Write  to say that  is an element in the set .
Write  to say that  isn’t an element of .

Examples

  

a ∈ B a B

a ∉ B a B

A = {1}

B = {1, 3, 2}

C = {△, 1}

D = {{17}, 17}

E = {1, 2, 7, α, ∅, dog, }
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Some common setsSome common sets

 is the set of Natural Numbers: 
 is the set of Integers: 
 is the set of Rational Numbers: e.g. 
 is the set of Real Numbers: e.g. 

 is the set  where  is a natural number.
 is the empty set; the only set with no elements.

ℕ ℕ = {0, 1, 2, …}

ℤ ℤ = {… , −2, −1, 0, 1, 2, …}

ℚ , −17,1
2

32
48

ℝ 1, −17, , π,32
48

2‾√
[n] {1, 2, … , n} n

{} = ∅
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Sets can be elements of other setsSets can be elements of other sets

For example, consider the sets

Then we have

A = {{1}, {2}, {1, 2}, ∅}

B = {1, 2}

B ∈ A

∅ ∈ A

15



Definitions: equality and subsetDefinitions: equality and subset

 and  are equal if they have the same elements.

 is a subset of  if every element of  is also in .

A B

A = B ≡ ∀x. x ∈ A ↔ x ∈ B

A B A B

A ⊆ B ≡ ∀x. x ∈ A → x ∈ B

Note: .A = B ≡ A ⊆ B ∧ B ⊆ A
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Example: understanding equalityExample: understanding equality

 and  are equal if they have the same elements.

Which sets are equal to each other?

A B

A = B ≡ ∀x. x ∈ A ↔ x ∈ B

A = {1, 2, 3}

B = {3, 4, 5}

C = {3, 4}

D = {4, 3, 3}

E = {3, 4, 3}

F = {4, {3}}
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Example: understanding equalityExample: understanding equality

 and  are equal if they have the same elements.

Which sets are equal to each other?

 are equal to each other.
Order of elements doesn’t matter, and duplicates don’t matter.

 is not equal to  because !

A B

A = B ≡ ∀x. x ∈ A ↔ x ∈ B

A = {1, 2, 3}

B = {3, 4, 5}

C = {3, 4}

D = {4, 3, 3}

E = {3, 4, 3}

F = {4, {3}}

C, D, E

F C, D, E {3} ≠ 3
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Example: understanding subsetsExample: understanding subsets

 is a subset of  if every element of  is also in .

Example sets

Are these subset formulas true or false?
 
 
 

A B A B

A ⊆ B ≡ ∀x. x ∈ A → x ∈ B

A = {1, 2, 3}

B = {3, 4, 5}

C = {3, 4}

∅ ⊆ A

A ⊆ B

C ⊆ B
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Building sets from predicatesBuilding sets from predicates

S = {x : P(x)}

 is the set of all  in the domain of 
 for which  is true.

The domain of  is o�en called the
universe .

S x

P P(x)

P

U
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Building sets from predicatesBuilding sets from predicates

S = {x : P(x)}

 is the set of all  in the domain of 
 for which  is true.

The domain of  is o�en called the
universe .

S x

P P(x)

P

U

S = {x ∈ A : P(x)}

 is the set of all  in  for which 
 is true.

S x A

P(x)
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Set operationsSet operations
Set operations and their relation to Boolean algebra.
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Union, intersection, and set differenceUnion, intersection, and set difference

Union

A B

Intersection

A B

Set difference

A B

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}

A ∖ B = {x : (x ∈ A) ∧ (x ∉ B)}
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Union, intersection, and set differenceUnion, intersection, and set difference

Union

A B

Intersection

A B

Set difference

A B

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}

A ∖ B = {x : (x ∈ A) ∧ (x ∉ B)}

Given the following sets …

Use set operations to make:
 
 

 

A = {1, 2, 3}

B = {3, 5, 6}

C = {3, 4}

[6] =

{3} =

{1, 2} =
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Union, intersection, and set differenceUnion, intersection, and set difference

Union
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Given the following sets …

Use set operations to make:
 
 

 

A = {1, 2, 3}

B = {3, 5, 6}

C = {3, 4}

[6] = A ∪ B ∪ C

{3} =

{1, 2} =
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Union, intersection, and set differenceUnion, intersection, and set difference

Union

A B

Intersection

A B

Set difference

A B
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Union, intersection, and set differenceUnion, intersection, and set difference

Union

A B

Intersection

A B

Set difference

A B

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}

A ∖ B = {x : (x ∈ A) ∧ (x ∉ B)}

Given the following sets …

Use set operations to make:
 
 

 

A = {1, 2, 3}

B = {3, 5, 6}

C = {3, 4}

[6] = A ∪ B ∪ C

{3} = A ∩ B = A ∩ C

{1, 2} = A ∖ B = A ∖ C
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Symmetric difference and complementSymmetric difference and complement

Symmetric difference

A B

Complement (with respect to universe )

A U

A ⊕ B = {x : (x ∈ A) ⊕ (x ∈ B)}

U

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
⎯ ⎯⎯⎯
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Symmetric difference and complementSymmetric difference and complement

Symmetric difference

A B

Complement (with respect to universe )

A U

A ⊕ B = {x : (x ∈ A) ⊕ (x ∈ B)}

U

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
⎯ ⎯⎯⎯

Given the sets and universe …

What is
 

 

A = {1, 2, 3}

B = {1, 2, 4, 6}

U = {1, 2, 3, 4, 5, 6}

A ⊕ B =

=A
⎯ ⎯⎯⎯
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Symmetric difference and complementSymmetric difference and complement

Symmetric difference

A B

Complement (with respect to universe )

A U

A ⊕ B = {x : (x ∈ A) ⊕ (x ∈ B)}

U

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
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Given the sets and universe …

What is
 

 

A = {1, 2, 3}

B = {1, 2, 4, 6}

U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}

=A
⎯ ⎯⎯⎯
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Symmetric difference and complementSymmetric difference and complement

Symmetric difference

A B

Complement (with respect to universe )

A U

A ⊕ B = {x : (x ∈ A) ⊕ (x ∈ B)}

U

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
⎯ ⎯⎯⎯

Given the sets and universe …

What is
 

 

A = {1, 2, 3}

B = {1, 2, 4, 6}

U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}

=A
⎯ ⎯⎯⎯

{4, 5, 6}
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This is Boolean algebra againThis is Boolean algebra again

Union  is defined using .

Intersection  is defined using .

Complement works like .

∪ ∨

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}

∩ ∧

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}

¬

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
⎯ ⎯⎯⎯
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This is Boolean algebra againThis is Boolean algebra again

Union  is defined using .

Intersection  is defined using .

Complement works like .

∪ ∨

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}

∩ ∧

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}

¬

= {x : x ∉ A} = {x : ¬(x ∈ A)}A
⎯ ⎯⎯⎯

This means that all equivalences from Boolean algebra translate directly into set
theory, and you can use them in your proofs!
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DeMorgan’s lawsDeMorgan’s laws

= ∩A ∪ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

= ∪A ∩ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

How would we prove these?
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DeMorgan’s lawsDeMorgan’s laws

Proof technique:
To prove , show

 and
.

= ∩A ∪ B
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A
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⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

How would we prove these?

C = D

x ∈ C → x ∈ D

x ∈ D → x ∈ C

24
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DeMorgan’s lawsDeMorgan’s laws

Proof technique:
To prove , show

 and
.

Proof that :
Let  be arbitrary.

 

= ∩A ∪ B
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C = D

x ∈ C → x ∈ D
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= ∩A ∪ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

x ∈ A ∪ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
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DeMorgan’s lawsDeMorgan’s laws

Proof technique:
To prove , show

 and
.

Proof that :
Let  be arbitrary.
Then, by definition of complement, .

 

= ∩A ∪ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

= ∪A ∩ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

How would we prove these?

C = D

x ∈ C → x ∈ D

x ∈ D → x ∈ C

= ∩A ∪ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

x ∈ A ∪ B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

¬(x ∈ A ∪ B)
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DeMorgan’s lawsDeMorgan’s laws
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Proof that :
Let  be arbitrary.
Then, by definition of complement, .
By definition of “ ”, .
Applying DeMorgan’s laws, we get .
So,  by definition of complement.
Finally,  by definition of “ ”, and we
have shown that .
 
Next, let  be arbitrary.

Finally, , so ,
which completes the proof. 
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⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

◻
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Distributivity lawsDistributivity laws

A B

C

A B

C

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
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A simple set proofA simple set proof

Prove that for any sets  and , we have .
Recall that 

Proof:

A B (A ∩ B) ⊆ A

X ⊆ Y ≡ ∀x. x ∈ X → x ∈ Y
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A simple set proofA simple set proof

Prove that for any sets  and , we have .
Recall that 

Proof:
Let  and  be arbitrary sets and  an arbitrary element of .

A B (A ∩ B) ⊆ A

X ⊆ Y ≡ ∀x. x ∈ X → x ∈ Y

A B x A ∩ B
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A simple set proofA simple set proof

Prove that for any sets  and , we have .
Recall that 

Proof:
Let  and  be arbitrary sets and  an arbitrary element of .
Then, by definition of , we have that  and .

A B (A ∩ B) ⊆ A

X ⊆ Y ≡ ∀x. x ∈ X → x ∈ Y

A B x A ∩ B

A ∩ B x ∈ A x ∈ B
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A simple set proofA simple set proof

Prove that for any sets  and , we have .
Recall that 

Proof:
Let  and  be arbitrary sets and  an arbitrary element of .
Then, by definition of , we have that  and .
It follows that  , as required. 

A B (A ∩ B) ⊆ A

X ⊆ Y ≡ ∀x. x ∈ X → x ∈ Y

A B x A ∩ B

A ∩ B x ∈ A x ∈ B

x ∈ A ◻
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Set proofs can use Set proofs can use Boolean algebra equivalencesBoolean algebra equivalences

Prove that for any sets  and , we have .

Proof:

A B (A ∩ B) ∪ (A ∩ ) = AB
⎯ ⎯⎯⎯
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Prove that for any sets  and , we have .

Proof:
Let  and  be arbitrary sets.

A B (A ∩ B) ∪ (A ∩ ) = AB
⎯ ⎯⎯⎯

A B
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Prove that for any sets  and , we have .

Proof:
Let  and  be arbitrary sets.
Since set operations are defined using logical connectives, the equivalences of
Boolean algebra can be used directly, as follows:

A B (A ∩ B) ∪ (A ∩ ) = AB
⎯ ⎯⎯⎯

A B
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Set proofs can use Set proofs can use Boolean algebra equivalencesBoolean algebra equivalences

Prove that for any sets  and , we have .

Proof:
Let  and  be arbitrary sets.
Since set operations are defined using logical connectives, the equivalences of
Boolean algebra can be used directly, as follows:

Distributivity
Complementarity
Identity

A B (A ∩ B) ∪ (A ∩ ) = AB
⎯ ⎯⎯⎯

A B

(A ∩ B) ∪ (A ∩ )B
⎯ ⎯⎯⎯

= A ∩ (B ∪ )B
⎯ ⎯⎯⎯

= A ∩ U

= A
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Set proofs can use Set proofs can use Boolean algebra equivalencesBoolean algebra equivalences

Prove that for any sets  and , we have .

Proof:
Let  and  be arbitrary sets.
Since set operations are defined using logical connectives, the equivalences of
Boolean algebra can be used directly, as follows:

Distributivity
Complementarity
Identity

A B (A ∩ B) ∪ (A ∩ ) = AB
⎯ ⎯⎯⎯

A B

(A ∩ B) ∪ (A ∩ )B
⎯ ⎯⎯⎯

= A ∩ (B ∪ )B
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= A ∩ U

= A

Universe  corresponds to 1 and  corresponds to 0.U ∅
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More setsMore sets
Power set, Cartesian product, and Russell’s paradox.
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Power setPower set

Power set of a set  is the set of all subsets of .

Examples
Let .

 
 

A A

(A) = {B : B ⊆ A}

Days = {M, W, F}

(Days) =

(∅) =
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Power setPower set

Power set of a set  is the set of all subsets of .

Examples
Let .

 
 

A A

(A) = {B : B ⊆ A}

Days = {M, W, F}

(Days) = {∅, {M}, {W}, {F}, {M, W}, {M, F}, {W, F}, {M, W, F}}

(∅) =
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Power setPower set

Power set of a set  is the set of all subsets of .

Examples
Let .

 
 

A A

(A) = {B : B ⊆ A}

Days = {M, W, F}

(Days) = {∅, {M}, {W}, {F}, {M, W}, {M, F}, {W, F}, {M, W, F}}

(∅) = {∅} ≠ ∅

29



Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

30



Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B =
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  .

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  .

 

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

A × ∅ =
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Cartesian productCartesian product

The Cartesian product of two sets is the set of all of their ordered pairs.

Examples
 is the real plane.
 is the set of all pairs of integers.

If ,
then  .

 .

A × B = {(a, b) : a ∈ A ∧ b ∈ B}

ℝ × ℝ

ℤ × ℤ

A = {1, 2}, B = {a, b, c}

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

A × ∅ = {(a, b) : a ∈ A ∧ b ∈ ∅} = {(a, b) : a ∈ A ∧ 𝖥} = ∅
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.S

S = {x : x ∉ x}
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.

S

S = {x : x ∉ x}

S
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.
Suppose that . Then, by definition of , , which is a contradiction.

S

S = {x : x ∉ x}

S

S ∈ S S S ∉ S
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.
Suppose that . Then, by definition of , , which is a contradiction.
Suppose that . Then, by definition of , , which is a contradiction
too.

S

S = {x : x ∉ x}

S

S ∈ S S S ∉ S

S ∉ S S S ∈ S
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Russell’s paradoxRussell’s paradox

Let  be the set of all sets that don’t contain themselves.

The definition of  is contradictory, hence the paradox.
Suppose that . Then, by definition of , , which is a contradiction.
Suppose that . Then, by definition of , , which is a contradiction
too.

To avoid the paradox …
Define  with respect to a universe of discourse.

With this definition,  and there is no contradiction because .

S

S = {x : x ∉ x}

S

S ∈ S S S ∉ S

S ∉ S S S ∈ S

S

S = {x ∈ U : x ∉ x}

S ∉ S S ∉ U
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Working with setsWorking with sets
Representing sets as bitvectors and applications of bitvectors.
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

Given characteristic vectors for  and , what is the vector for
 
 

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B

A B

A ∪ B =

A ∩ B =
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

Given characteristic vectors for  and , what is the vector for
 
 

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B

A B

A ∪ B = ( ∨ ) … ( ∨ )a1 b1 an bn

A ∩ B =
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Representing sets as bitvectorsRepresenting sets as bitvectors
Suppose that universe  is .

We can represent every set  as a vector of bits:

This is called the characteristic vector of set .

Given characteristic vectors for  and , what is the vector for
 
 

U {1, 2, … , n}

B ⊆ U

…  where b1b2 bn = 1 if i ∈ Bbi

= 0 if i ∉ Bbi

B

A B

A ∪ B = ( ∨ ) … ( ∨ )a1 b1 an bn

A ∩ B = ( ∧ ) … ( ∧ )a1 b1 an bn
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Unix/Linux file permissionsUnix/Linux file permissions

$ ls -l 
drwxr-xr-x ... Documents/ 
-rw-r--r-- ... file1 

Permissions maintained as bitvectors.
Letter means the bit is 1.
”-“ means the bit is zero.

34



Bitwise operationsBitwise operations

 

 

Note that .

01101101

∨ 00110111

01111111

z = x | y

00101010

∧ 00001111

00001010

z = x & y

01101101

⊕ 00110111

01011010

z = x ^ y (x ⊕ y) ⊕ y = x
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Private key cryptographyPrivate key cryptography
Alice wants to communicate a message  secretly to Bob, so that
eavesdropper Eve who sees their conversation can’t understand .

Alice and Bob can get together ahead of time and privately share a secret key 
.

How can they communicate securely in this setting?

Sender
 (Alice)

plaintext
message key

encrypt
Receiver
 (Bob)

plaintext
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One-time padOne-time pad

Alice and Bob privately share a random -bitvector .
Eve doesn’t know .

Later, Alice has -bit message  to send to Bob.
Alice computes .
Alice sends  to Bob.
Bob computes , which is .

Eve can’t figure out  from  unless she can guess .
And that’s very unlikely for large  …
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SummarySummary
Sets are a basic notion in mathematics and computer science.

Collections of objects called elements.
Can be compared for equality ( ) and containment ( ).

Set operations correspond to Boolean algebra operations.
You can prove theorems about sets using Boolean algebra laws.

Sets can be represented efficiently using bitvectors.
This representation is used heavily in the real world.
With this representation, set operations reduce to fast bitwise operations.
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