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TopicsTopics
Predicate logic proofs

A review and continuation of .
Natural language proofs

From formal proofs to natural language proofs.
Proof strategies

Proof by contrapositive, counterexamples, and proof by contradiction.
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Predicate logic proofsPredicate logic proofs
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Inference rules for quantifiersInference rules for quantifiers

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

The name a stands for an arbitrary
value in the domain. No other name
in P depends on a.

The name c is fresh and stands for a value
in the domain where P(c) is true. List all
dependencies for c.
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Predicate logic proofs can use …Predicate logic proofs can use …

Predicate logic inference rules
Applied to whole formulas only.

Predicate logic equivalences
Even on subformulas.

Propositional logic inference rules
Applied to whole formulas only.

Propositional logic equivalences
Even on subformulas.
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Predicate logic proofs can also use domain propertiesPredicate logic proofs can also use domain properties
Prove that there is an even prime number: ∃x. Even(x) ∧ Prime(x).

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

We give an explicit logic definition of Even but
use a black-box definition of Prime because
the proof won’t need to break it down further.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
Prime(x) ::=  “x is prime”
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Predicate logic proofs can also use domain propertiesPredicate logic proofs can also use domain properties
Prove that there is an even prime number: ∃x. Even(x) ∧ Prime(x).
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2.
3.
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Prove that there is an even prime number: ∃x. Even(x) ∧ Prime(x).

1.
2.
3. Even(2)
4. Prime(2)
5. Even(2) ∧ Prime(2) Intro ∧ : 3, 4
6. ∃x. Even(x) ∧ Prime(x) Intro ∃: 5

Elim ∀ 
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∴ P(a) for any a
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Predicate logic proofs can also use domain propertiesPredicate logic proofs can also use domain properties
Prove that there is an even prime number: ∃x. Even(x) ∧ Prime(x).

1.
2.
3. Even(2)
4. Prime(2) Property of integer 2
5. Even(2) ∧ Prime(2) Intro ∧ : 3, 4
6. ∃x. Even(x) ∧ Prime(x) Intro ∃: 5

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary
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P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

We give an explicit logic definition of Even but
use a black-box definition of Prime because
the proof won’t need to break it down further.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
Prime(x) ::=  “x is prime”
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Predicate logic proofs can also use domain propertiesPredicate logic proofs can also use domain properties
Prove that there is an even prime number: ∃x. Even(x) ∧ Prime(x).

1. 2 = 2 ⋅ 1 Arithmetic
2. ∃y. 2 = 2 ⋅ y Intro ∃: 1
3. Even(2) Definition of Even: 2
4. Prime(2) Property of integer 2
5. Even(2) ∧ Prime(2) Intro ∧ : 3, 4
6. ∃x. Even(x) ∧ Prime(x) Intro ∃: 5

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

We give an explicit logic definition of Even but
use a black-box definition of Prime because
the proof won’t need to break it down further.

We are using the logic definition of
Even to establish that 2 is Even, and
we are using domain property to
establish that 2 is Prime.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
Prime(x) ::=  “x is prime”
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An equal example to demonstrate Elim An equal example to demonstrate Elim ∀∀ and Intro  and Intro ∃∃
Prove that ∀y. ∃z. y = z follows from ∀x. x = x.

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers
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An equal example to demonstrate Elim An equal example to demonstrate Elim ∀∀ and Intro  and Intro ∃∃
Prove that ∀y. ∃z. y = z follows from ∀x. x = x.

1. ∀x. x = x Given
2.
3.
4. ∀y. ∃z. y = z

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers
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An equal example to demonstrate Elim An equal example to demonstrate Elim ∀∀ and Intro  and Intro ∃∃
Prove that ∀y. ∃z. y = z follows from ∀x. x = x.

1. ∀x. x = x Given
2. a = a Elim ∀: 1, a is arbitrary
3.
4. ∀y. ∃z. y = z

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers
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Prove that ∀y. ∃z. y = z follows from ∀x. x = x.

1. ∀x. x = x Given
2. a = a Elim ∀: 1, a is arbitrary
3. ∃z. a = z Intro ∃: 2
4. ∀y. ∃z. y = z

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers
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An equal example to demonstrate Elim An equal example to demonstrate Elim ∀∀ and Intro  and Intro ∃∃
Prove that ∀y. ∃z. y = z follows from ∀x. x = x.

1. ∀x. x = x Given
2. a = a Elim ∀: 1, a is arbitrary
3. ∃z. a = z Intro ∃: 2
4. ∀y. ∃z. y = z Intro ∀: 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers

7



An equal example to demonstrate Elim An equal example to demonstrate Elim ∀∀ and Intro  and Intro ∃∃
Prove that ∀y. ∃z. y = z follows from ∀x. x = x.

1. ∀x. x = x Given
2. a = a Elim ∀: 1, a is arbitrary
3. ∃z. a = z Intro ∃: 2
4. ∀y. ∃z. y = z Intro ∀: 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

When applying Elim ∀ to ∀x. P(x), you have
to replace all occurrences of the universal
variable x in P(x) with the arbitrary name a.

But when applying Intro ∃ to P(c), you don’t
have to replace all occurrences of c in P(c) with
the existential variable x.

Domain of discourse
Integers
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A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

4. ∀x. Even(x) → Even(x2)

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

3. Even(a) → Even(a2)
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 2.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2.
2.3.
2.4.
2.5.
2.6. Even(a2)

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 2.
→  so use DRP to get 3.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3.
2.4.
2.5. ∃y. a2 = 2y
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 2.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3. a = 2b Elim ∃: 2.2, b depends on a
2.4.
2.5. ∃y. a2 = 2y
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 2.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Use Elim ∃ on 2.2.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y

8



A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3. a = 2b Elim ∃: 2.2, b depends on a
2.4. a2 = 4b2 = 2(2b2) Algebra
2.5. ∃y. a2 = 2y
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 2.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Use Elim ∃ on 2.2.
Use algebra on 2.3 to match

the body of 2.5.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square example to demonstrate dependenciesA square example to demonstrate dependencies
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3. a = 2b Elim ∃: 2.2, b depends on a
2.4. a2 = 4b2 = 2(2b2) Algebra
2.5. ∃y. a2 = 2y Intro ∃: 2.4
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 2.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Use Elim ∃ on 2.2.
Use algebra on 2.3 to match

the body of 2.5.
Use Intro ∃ on 2.4 to get 2.5.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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Why list dependencies? To avoid Why list dependencies? To avoid incorrect proofsincorrect proofs..
Over the integer domain: ∀x. ∃y. y ≥ x is True but ∃y. ∀x. y ≥ x is False.

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

The name a stands for an arbitrary value in the
domain. No other name in P depends on a.

The name c is fresh and stands for a value in the domain
where P(c) is true. List all dependencies for c.
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Why list dependencies? To avoid Why list dependencies? To avoid incorrect proofsincorrect proofs..
Over the integer domain: ∀x. ∃y. y ≥ x is True but ∃y. ∀x. y ≥ x is False.

1. ∀x. ∃y. y ≥ x Given
2.  
3.
4.
5.
6. ∃y. ∀x. y ≥ x

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Example: an incorrect proof.

The name a stands for an arbitrary value in the
domain. No other name in P depends on a.

The name c is fresh and stands for a value in the domain
where P(c) is true. List all dependencies for c.
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1. ∀x. ∃y. y ≥ x Given
2. Let a be an arbitrary integer.  
3. ∃y. y ≥ a Elim ∀: 1
4. b ≥ a Elim ∃: 3, b depends on a
5.
6. ∃y. ∀x. y ≥ x Intro ∃: 5
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Why list dependencies? To avoid Why list dependencies? To avoid incorrect proofsincorrect proofs..
Over the integer domain: ∀x. ∃y. y ≥ x is True but ∃y. ∀x. y ≥ x is False.

1. ∀x. ∃y. y ≥ x Given
2. Let a be an arbitrary integer.  
3. ∃y. y ≥ a Elim ∀: 1
4. b ≥ a Elim ∃: 3, b depends on a
5. ∀x. b ≥ x Intro ∀: 2, 4
6. ∃y. ∀x. y ≥ x Intro ∃: 5

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Example: an incorrect proof.

Can’t get rid of a since
another name, b, in the
same formula depends on it!

The name a stands for an arbitrary value in the
domain. No other name in P depends on a.

The name c is fresh and stands for a value in the domain
where P(c) is true. List all dependencies for c.
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Natural language proofsNatural language proofs
From formal proofs to natural language proofs.
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Natural language versus (predicate) logic proofsNatural language versus (predicate) logic proofs

We o�en write proofs in English rather than as fully formal proofs.
They are easier for people to read.
(But theorem provers prefer fully formal proofs. :)

English proofs follow the structure of the corresponding formal proofs.
Formal proof methods help to understand how proofs work in English.
And they give clues for how to produce the proofs in English.

11



The not so odd example in EnglishThe not so odd example in English
Prove that there is an even integer.

 
 
 
 

1. 2 = 2 ⋅ 1 Arithmetic
2. ∃y. 2 = 2 ⋅ y Intro ∃: 1
3. Even(2) Definition of Even: 2
4. ∃x. Even(x) Intro ∃: 3

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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1. 2 = 2 ⋅ 1 Arithmetic
2. ∃y. 2 = 2 ⋅ y Intro ∃: 1
3. Even(2) Definition of Even: 2
4. ∃x. Even(x) Intro ∃: 3
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The square example in EnglishThe square example in English
Prove that the square of every even number is even.

Let a be an arbitrary even integer.  

   
Then, by definition, a = 2b  
for some integer b, depending on a.  
Squaring both sides, we get a2 = 4b2 = 2(2b2).  

Since 2b2 is an integer, by definition,  

a2 is even.  

Since a was arbitrary, it follows that  
the square of every even number is even. ◻  

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3. a = 2b Elim ∃: 2.2, b depends on a
2.4. a2 = 4b2 = 2(2b2) Algebra
2.5. ∃y. a2 = 2y Intro ∃: 2.4
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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An odd square example in EnglishAn odd square example in English
Prove that the square of every odd number is odd.

Domain of discourse
Integers

Predicate definitions
Odd(x) ::= ∃y. x = 2 ⋅ y + 1
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Then, b = 2c + 1 for some integer c (depending on b).
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An odd square example in EnglishAn odd square example in English
Prove that the square of every odd number is odd.

Proof
Let b be an arbitrary odd number.
Then, b = 2c + 1 for some integer c (depending on b).
Therefore, b2 = (2c + 1)2 = 4c2 + 4c + 1 = 2(2c2 + 2c) + 1.
Since 2c2 + 2c is an integer, b2 is odd.
The statement follows since b was arbitrary. ◻

Domain of discourse
Integers

Predicate definitions
Odd(x) ::= ∃y. x = 2 ⋅ y + 1
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A rational example in EnglishA rational example in English
A real number x is rational iff there exist integers p and q with q ≠ 0 such that 
x = p /q.

Prove: “If x and y are arbitrary rational numbers then xy is rational.”

Domain of discourse
Reals

Predicate definitions

Rational(x) ≡ ∃p. ∃q. x =
p
q ∧ Integer(p) ∧ Integer(q) ∧ q ≠ 0
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some integers c, d, where d ≠ 0.
Multiplying, we get that xy = (ac) / (bd).
Since b and d are both non-zero, so is bd; furthermore, ac and bd are integers.
It follows that xy is rational, by definition of rational.

Domain of discourse
Reals

Predicate definitions
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p
q ∧ Integer(p) ∧ Integer(q) ∧ q ≠ 0
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Benefits of English proofsBenefits of English proofs

This is more work to write

than this

Higher level language is easier
because it skips details.

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c
%e = add %arr, %i
store %e, %d

arr[i] = arr[(i+1) % n];
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This is more work to write

than this

Higher level language is easier
because it skips details.

Formal proofs are the low level
language: each part must be spelled out
in precise detail.

English proofs are the high level
language.

An English proof is correct if the reader is
convinced they can “compile” it to a
formal proof if necessary.

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c
%e = add %arr, %i
store %e, %d

arr[i] = arr[(i+1) % n];
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Proof strategiesProof strategies
Proof by contrapositive, counterexamples, and proof by contradiction.

17



Proof by contrapositiveProof by contrapositive
If we assume ¬q and derive ¬p, then we have proven that ¬q → ¬p, which is
equivalent to proving p → q.

1.1. ¬q Assumption
  …  
1.3. ¬p  

2. ¬q → ¬p Direct Proof Rule
3. p → q Contrapositive: 2

18



CounterexamplesCounterexamples

To disprove ∀x. P(x), prove ∃x. ¬P(x).
Works by DeMorgan’s Law: ¬∀x. P(x) ≡ ∃x. ¬P(x).
All we need to do is find an x for which P(x) is false.
This x is called a counterexample.

Example: disprove that “Every prime number is odd”.
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CounterexamplesCounterexamples

To disprove ∀x. P(x), prove ∃x. ¬P(x).
Works by DeMorgan’s Law: ¬∀x. P(x) ≡ ∃x. ¬P(x).
All we need to do is find an x for which P(x) is false.
This x is called a counterexample.

Example: disprove that “Every prime number is odd”.
2 is a prime number that is not odd.
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Proof by contradictionProof by contradiction
If we assume p and derive F (a contradiction), then we have proven ¬p.

1.1. p Assumption
  …  
1.3. F  

2. p → F Direct Proof Rule
3. ¬p ∨ F Law of Implication: 2
4. ¬p Identity: 3
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: ¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x)).

Proof by contradiction
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: ¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x)).

Proof by contradiction
Let x be an arbitrary integer and suppose that it is both even and odd.

21



An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: ¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x)).
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Then x = 2a for some integer a and x = 2b + 1 for some integer b.
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1
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But two integers cannot differ by 
1
2  so this is a contradiction.
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An example proof by contradictionAn example proof by contradiction

Prove that “No integer is both even and odd.”
English proof: ¬∃x. Even(x) ∧ Odd(x) ≡ ∀x. ¬(Even(x) ∧ Odd(x)).

Proof by contradiction
Let x be an arbitrary integer and suppose that it is both even and odd.
Then x = 2a for some integer a and x = 2b + 1 for some integer b.

Therefore 2a = 2b + 1 and hence a = b +
1
2 .

But two integers cannot differ by 
1
2  so this is a contradiction.

Therefore no integer is both even and odd. ◻
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Fun strategy: proof by computerFun strategy: proof by computer
 an automated theorem prover:Use

; No integer is both even and odd. 
 
(define-fun even ((x Int)) Bool 
  (exists ((y Int)) (= x (* 2 y)))) 
 
(define-fun odd ((x Int)) Bool 
  (exists ((y Int)) (= x (+ (* 2 y) 1)))) 
 
(define-fun claim () Bool 
  (not (exists ((x Int)) (and (even x) (odd x))))) 
 
(assert (not claim)) ; proof by contradiction 
 
(check-sat)

22
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Fun strategy: proof by computerFun strategy: proof by computer
 an automated theorem prover:

While this example works, proofs of arbitrary formulas in predicate logic
cannot be automated. But interactive theorem provers can still help by
checking your formal proof and filling in some low-level details for you.

Use

; No integer is both even and odd. 
 
(define-fun even ((x Int)) Bool 
  (exists ((y Int)) (= x (* 2 y)))) 
 
(define-fun odd ((x Int)) Bool 
  (exists ((y Int)) (= x (+ (* 2 y) 1)))) 
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Fun fact: counterexamples & contradiction in verificationFun fact: counterexamples & contradiction in verification

Automated verifiers work by counterexample and contradiction proofs.
Recall that program verification involves proving that a program P satisfies a
specification S on all inputs x: ∀x. p(x) → s(x), where p and s are formulas
encoding the semantics of P and S.
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Automated verifiers work by counterexample and contradiction proofs.
Recall that program verification involves proving that a program P satisfies a
specification S on all inputs x: ∀x. p(x) → s(x), where p and s are formulas
encoding the semantics of P and S.

The program verifier sends the formula ∃x. p(x) ∧ ¬s(x) to the prover.
¬∀x. p(x) → s(x) ≡ ∃x. ¬(p(x) → s(x)) ≡ ∃x. ¬(¬p(x) ∨ s(x)) ≡ ∃x. p(x) ∧ ¬s(x).
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Automated verifiers work by counterexample and contradiction proofs.
Recall that program verification involves proving that a program P satisfies a
specification S on all inputs x: ∀x. p(x) → s(x), where p and s are formulas
encoding the semantics of P and S.

The program verifier sends the formula ∃x. p(x) ∧ ¬s(x) to the prover.
¬∀x. p(x) → s(x) ≡ ∃x. ¬(p(x) → s(x)) ≡ ∃x. ¬(¬p(x) ∨ s(x)) ≡ ∃x. p(x) ∧ ¬s(x).

If the prover finds a counterexample, we know the program is incorrect.
The counterexample is a concrete input (test case) on which the program
violates the spec.
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Fun fact: counterexamples & contradiction in verificationFun fact: counterexamples & contradiction in verification

Automated verifiers work by counterexample and contradiction proofs.
Recall that program verification involves proving that a program P satisfies a
specification S on all inputs x: ∀x. p(x) → s(x), where p and s are formulas
encoding the semantics of P and S.

The program verifier sends the formula ∃x. p(x) ∧ ¬s(x) to the prover.
¬∀x. p(x) → s(x) ≡ ∃x. ¬(p(x) → s(x)) ≡ ∃x. ¬(¬p(x) ∨ s(x)) ≡ ∃x. p(x) ∧ ¬s(x).

If the prover finds a counterexample, we know the program is incorrect.
The counterexample is a concrete input (test case) on which the program
violates the spec.

If no counterexample exists, we know the program is correct.
Because this is proof by contradiction! The prover assumed ∃x. p(x) ∧ ¬s(x)
and arrived at false (“unsat”).
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SummarySummary
Formal (logic) proofs follow well-defined rules and are easy to check.

They can be checked mechanically.
And are used in the construction of critical so�ware.

English proofs correspond to those rules but are easier for people to read.
Easily checkable in principle.

Simple proof strategies already do a lot.
Later we will cover a specific strategy that applies to loops and recursion
(mathematical induction).
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