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Inference rules for propositional logicInference rules for propositional logic
Two rules per binary connective: to eliminate and introduce it.

Intro ∧  
A; B

∴ A ∧ B  

Elim ∧  
A ∧ B
∴ A, B

Intro ∨  
A

∴ A ∨ B, B ∨ A  

Elim ∨  
A ∨ B; ¬A

∴ B

Direct Proof Rule 
A ⟹ B
∴ A → B

Modus Ponens 
A; A → B

∴ B

Direct Proof Rule is special: not like the other rules.
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Proving implications with the direct proof ruleProving implications with the direct proof rule

Direct Proof Rule 
A ⟹ B
∴ A → B

The premise A ⟹ B means “Given A, we can prove B.”

So the direct proof rule says that if we have such a proof, then we can
conclude that A → B is true.
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Proving implications with the direct proof ruleProving implications with the direct proof rule

Direct Proof Rule 
A ⟹ B
∴ A → B

The premise A ⟹ B means “Given A, we can prove B.”

So the direct proof rule says that if we have such a proof, then we can
conclude that A → B is true.

Example: prove (p ∧ q) → (p ∨ q).

1.1. p ∧ q Assumption
1.2.
1.3. p ∨ q

2. (p ∧ q) → (p ∨ q) Direct Proof Rule

Indent the proof subroutine.
Write the assumption and the goal.
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Proving implications with the direct proof ruleProving implications with the direct proof rule

Direct Proof Rule 
A ⟹ B
∴ A → B

The premise A ⟹ B means “Given A, we can prove B.”

So the direct proof rule says that if we have such a proof, then we can
conclude that A → B is true.

Example: prove (p ∧ q) → (p ∨ q).

1.1. p ∧ q Assumption
1.2. p Elim ∧ : 1.1
1.3. p ∨ q Intro ∨ : 1.2

2. (p ∧ q) → (p ∨ q) Direct Proof Rule

Indent the proof subroutine.
Write the assumption and the goal.
Fill in the steps.
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Why does the direct proof rule work?Why does the direct proof rule work?
Inference rules let us derive facts that are implied by the existing facts.
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Why does the direct proof rule work?Why does the direct proof rule work?
Inference rules let us derive facts that are implied by the existing facts.

So, for every rule 
P

∴ Q , P → Q is a tautology (P → Q ≡ T).

The proof P ⟹ Q shows that P → Q is a tautology (P → Q ≡ T), since it
just a series of implications that we know are tautologies.

So the Direct Proof Rule 
A ⟹ B
∴ A → B  says that we can add A → B to our set of

facts, if we can show that A → B is a tautology.

One way to show that A → B ≡ T is by writing a subproof, using all the facts
we have inferred up to that point.
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An example proofAn example proof
Prove ((p → q) ∧ (q → r)) → (p → r).
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An example proofAn example proof
Prove ((p → q) ∧ (q → r)) → (p → r).

1.1. (p → q) ∧ (q → r) Assumption
1.2.
1.3.

1.5. p → r

2. ((p → q) ∧ (q → r)) → (p → r) Direct
Proof
Rule

Write the premise and the conclusion.
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1.5. p → r
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Proof
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An example proofAn example proof
Prove ((p → q) ∧ (q → r)) → (p → r).

1.1. (p → q) ∧ (q → r) Assumption
1.2. p → q Elim ∧ : 1.1
1.3. q → r Elim ∧ : 1.1

1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r

1.5. p → r Direct Proof Rule

2. ((p → q) ∧ (q → r)) → (p → r) Direct
Proof
Rule

Write the premise and the conclusion.
Work forwards and backwards.
We’ll need parts of 1.1 so Elim ∧  to
get 1.2, 1.3.
We can use DPR to get 1.5.
Using MP on 1.2, 1.4.1 gives us 1.4.2.
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An example proofAn example proof
Prove ((p → q) ∧ (q → r)) → (p → r).

1.1. (p → q) ∧ (q → r) Assumption
1.2. p → q Elim ∧ : 1.1
1.3. q → r Elim ∧ : 1.1

1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2

1.5. p → r Direct Proof Rule

2. ((p → q) ∧ (q → r)) → (p → r) Direct
Proof
Rule

Write the premise and the conclusion.
Work forwards and backwards.
We’ll need parts of 1.1 so Elim ∧  to
get 1.2, 1.3.
We can use DPR to get 1.5.
Using MP on 1.2, 1.4.1 gives us 1.4.2.
Using MP on 1.3, 1.4.2 gives us 1.4.3.
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Which facts can be used in a subproof?Which facts can be used in a subproof?

1.1. (p → q) ∧ (q → r) Assumption
1.2. p → q Elim ∧ : 1.1
1.3. q → r Elim ∧ : 1.1

1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2

1.5. p → r Direct Proof Rule

2. ((p → q) ∧ (q → r)) → (p → r) Direct
Proof
Rule

A line k in a (sub)proof can use a fact
at line i if the set of assumptions and
givens that k is derived from
contains all the assumptions and
givens that i is derived from.
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Which facts can be used in a subproof?Which facts can be used in a subproof?
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givens that k is derived from
contains all the assumptions and
givens that i is derived from.
So, 1.4.2 can use 1.2 because they
are derived from the assumptions
{1.1, 1.4.1} and {1.1}, respectively.
Can 1.5 use 1.4.3?

No. Because 1.5 is derived from
{1.1} and 1.4.3 from {1.1, 1.4.1}.
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Which facts can be used in a subproof?Which facts can be used in a subproof?
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contains all the assumptions and
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So, 1.4.2 can use 1.2 because they
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{1.1, 1.4.1} and {1.1}, respectively.
Can 1.5 use 1.4.3?

No. Because 1.5 is derived from
{1.1} and 1.4.3 from {1.1, 1.4.1}.

Can 2 use 1.2?
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Which facts can be used in a subproof?Which facts can be used in a subproof?

1.1. (p → q) ∧ (q → r) Assumption
1.2. p → q Elim ∧ : 1.1
1.3. q → r Elim ∧ : 1.1

1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2

1.5. p → r Direct Proof Rule

2. ((p → q) ∧ (q → r)) → (p → r) Direct
Proof
Rule

A line k in a (sub)proof can use a fact
at line i if the set of assumptions and
givens that k is derived from
contains all the assumptions and
givens that i is derived from.
So, 1.4.2 can use 1.2 because they
are derived from the assumptions
{1.1, 1.4.1} and {1.1}, respectively.
Can 1.5 use 1.4.3?

No. Because 1.5 is derived from
{1.1} and 1.4.3 from {1.1, 1.4.1}.

Can 2 use 1.2?
No. Because 2 is derived from {}
and 1.2 from {1.1}.
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Which facts can be used in a subproof? A mnemonicWhich facts can be used in a subproof? A mnemonic
{

{

1.1. (p → q) ∧ (q → r) Assumption
1.2. p → q Elim ∧ : 1.1
1.3. q → r Elim ∧ : 1.1

{

1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2

}

1.5. p → r Direct Proof Rule
}

2. ((p → q) ∧ (q → r)) → (p → r) Direct Proof
Rule

}

This is just like Java’s scoping rules.
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A general proof strategyA general proof strategy

1. Look at the rules for introducing connectives to see how you would build up
the formula you want to prove from pieces of what is given.

2. Use the rules for eliminating connectives to break down the given formulas
so that you get the pieces need for 1

3. Write the proof beginning with what you figured out for 2 followed by 1.

Intro ∧  
A; B

∴ A ∧ B  

Elim ∧  
A ∧ B
∴ A, B

Intro ∨  
A

∴ A ∨ B, B ∨ A  

Elim ∨  
A ∨ B; ¬A

∴ B

Direct Proof Rule 
A ⟹ B
∴ A → B

Modus Ponens 
A; A → B

∴ B
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A quick look at predicate logic proofsA quick look at predicate logic proofs
Inference rules for quantifiers and a “hello” world example.
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Inference rules for quantifiersInference rules for quantifiers

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

The name a stands for an arbitrary
value in the domain. No other name
in P depends on a.

The name c is fresh and stands for a value
in the domain where P(c) is true. List all
dependencies for c.
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Predicate logic proofs can use …Predicate logic proofs can use …

Predicate logic inference rules
Applied to whole formulas only.

Predicate logic equivalences
Even on subformulas.

Propositional logic inference rules
Applied to whole formulas only.

Propositional logic equivalences
Even on subformulas.
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A “hello world” proofA “hello world” proof
Prove (∀x. P(x)) → (∃x. P(x)).

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c
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A “hello world” proofA “hello world” proof
Prove (∀x. P(x)) → (∃x. P(x)).

1.1. ∀x. P(x) Assumption
1.2.
1.3. ∃x. P(x)

2. (∀x. P(x)) → (∃x. P(x)) Direct Proof Rule

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Given → , so use Direct Proof
Rule.
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Prove (∀x. P(x)) → (∃x. P(x)).

1.1. ∀x. P(x) Assumption
1.2. P(c)
1.3. ∃x. P(x) Intro ∃: 1.2
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P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Given → , so use Direct Proof
Rule.

We can use Intro ∃ to get 1.3, but
need P(c) for some c.
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A “hello world” proofA “hello world” proof
Prove (∀x. P(x)) → (∃x. P(x)).

1.1. ∀x. P(x) Assumption
1.2. P(c) Elim ∀: 1.1
1.3. ∃x. P(x) Intro ∃: 1.2

2. (∀x. P(x)) → (∃x. P(x)) Direct Proof Rule

Elim ∀ 
∀x. P(x)
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∃x. P(x)

∴ P(c) for a specific c

Given → , so use Direct Proof
Rule.

We can use Intro ∃ to get 1.3, but
need P(c) for some c.

We have P(c) from Elim ∀ on 1.1.
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A “hello world” proofA “hello world” proof
Prove (∀x. P(x)) → (∃x. P(x)).

1.1. ∀x. P(x) Assumption
1.2. P(c) Elim ∀: 1.1
1.3. ∃x. P(x) Intro ∃: 1.2

2. (∀x. P(x)) → (∃x. P(x)) Direct Proof Rule

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Working forwards and backwards:
In applying Intro ∃ rule, we didn’t
know what expression we might
be able to prove P(c) for, so we
worked forwards to figure out
what might work.

Given → , so use Direct Proof
Rule.

We can use Intro ∃ to get 1.3, but
need P(c) for some c.

We have P(c) from Elim ∀ on 1.1.
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An in-depth look at predicate logic proofsAn in-depth look at predicate logic proofs
Understanding rules for quantifiers through more advanced examples.
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Advanced proofs: considering domain semanticsAdvanced proofs: considering domain semantics
So far, we have treated the predicate definitions as black boxes, and the
domain of discourse as a set of objects with no additional properties.

In practice, we want to prove theorems for specific domains, and use the
properties of those domains in our proofs.
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Advanced proofs: considering domain semanticsAdvanced proofs: considering domain semantics
So far, we have treated the predicate definitions as black boxes, and the
domain of discourse as a set of objects with no additional properties.

In practice, we want to prove theorems for specific domains, and use the
properties of those domains in our proofs.

For example, the set of integers is equipped with the operators +, ⋅ , = .

We can use these operators in our predicates (below) and proofs (next):

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A not so odd exampleA not so odd example
Prove that there is an even number: ∃x. Even(x).

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A not so odd exampleA not so odd example
Prove that there is an even number: ∃x. Even(x).
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2.
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A not so odd exampleA not so odd example
Prove that there is an even number: ∃x. Even(x).

1.
2. ∃y. 2 = 2 ⋅ y
3. Even(2) Definition of Even: 2
4. ∃x. Even(x) Intro ∃: 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)
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P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
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Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A not so odd exampleA not so odd example
Prove that there is an even number: ∃x. Even(x).

1. 2 = 2 ⋅ 1 Arithmetic
2. ∃y. 2 = 2 ⋅ y Intro ∃: 1
3. Even(2) Definition of Even: 2
4. ∃x. Even(x) Intro ∃: 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A prime exampleA prime example
Prove that there is an even prime number: ∃x. Even(x) ∧ Prime(x).

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

We use a black-box definition of Prime because the proof won’t need to break it down further.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
Prime(x) ::=  “x is prime”
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Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
Prime(x) ::=  “x is prime”
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An equal exampleAn equal example
Prove that ∀y. ∃z. y = z follows from ∀x. x = x.

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

3. Even(a) → Even(a2)
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 3.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2.
2.3.
2.4.
2.5.
2.6. Even(a2)

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 3.
→  so use DRP to get 3.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3.
2.4.
2.5. ∃y. a2 = 2y
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 3.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
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2.4.
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∴ P(c) for a specific c

Use Intro ∀ on 1 and 3.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Use Elim ∃ on 2.2.

Domain of discourse
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Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3. a = 2b Elim ∃: 2.2, b depends on a
2.4. a2 = 4b2 = 2(2b2) Algebra
2.5. ∃y. a2 = 2y
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
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Use Intro ∀ on 1 and 3.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Use Elim ∃ on 2.2.
Use algebra on 2.3 to match

the body of 2.5.

Domain of discourse
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Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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A square exampleA square example
Prove that the square of every even number is even: ∀x. Even(x) → Even(x2).

1. Let a be an arbitrary integer.  

2.1. Even(a) Assumption
2.2. ∃y. a = 2y Definition of Even: 2.1
2.3. a = 2b Elim ∃: 2.2, b depends on a
2.4. a2 = 4b2 = 2(2b2) Algebra
2.5. ∃y. a2 = 2y Intro ∃: 2.4
2.6. Even(a2) Definition of Even: 2.5

3. Even(a) → Even(a2) Direct Proof Rule
4. ∀x. Even(x) → Even(x2) Intro ∀: 1, 3

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Use Intro ∀ on 1 and 3.
→  so use DRP to get 3.

Use definition of Even to break
down 2.1 and 2.6.

Use Elim ∃ on 2.2.
Use algebra on 2.3 to match

the body of 2.5.
Use Intro ∃ on 2.4 to get 2.5.

Domain of discourse
Integers

Predicate definitions
Even(x) ::= ∃y. x = 2 ⋅ y
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Why list dependencies? To avoid Why list dependencies? To avoid incorrect proofsincorrect proofs..
Over the integer domain: ∀x. ∃y. y ≥ x is True but ∃y. ∀x. y ≥ x is False.

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

The name a stands for an arbitrary value in the
domain. No other name in P depends on a.

The name c is fresh and stands for a value in the domain
where P(c) is true. List all dependencies for c.
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domain. No other name in P depends on a.

The name c is fresh and stands for a value in the domain
where P(c) is true. List all dependencies for c.
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Why list dependencies? To avoid Why list dependencies? To avoid incorrect proofsincorrect proofs..
Over the integer domain: ∀x. ∃y. y ≥ x is True but ∃y. ∀x. y ≥ x is False.

1. ∀x. ∃y. y ≥ x Given
2. Let a be an arbitrary integer.  
3. ∃y. y ≥ a Elim ∀: 1
4. b ≥ a Elim ∃: 3, b depends on a
5. ∀x. b ≥ x Intro ∀: 2, 4
6. ∃y. ∀x. y ≥ x Intro ∃: 5

Elim ∀ 
∀x. P(x)

∴ P(a) for any a

Intro ∀ 
P(a); a is arbitrary

∴ ∀x. P(x)

Intro ∃ 
P(c) for some c

∴ ∃x. P(x)

Elim ∃ 
∃x. P(x)

∴ P(c) for a specific c

Example: an incorrect proof.

Can’t get rid of a since
another name, b, in the
same formula depends on it!

The name a stands for an arbitrary value in the
domain. No other name in P depends on a.

The name c is fresh and stands for a value in the domain
where P(c) is true. List all dependencies for c.
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SummarySummary
Predicate logic proofs extend propositional logic proofs.

Can use all rules and equivalences for propositional logic.
Plus inference rules for quantifiers and equivalences for predicate logic.

When applying Intro ∀ to P(a), make sure that
a is arbitrary, and
no other name depends on a.

When applying Elim ∃ to ∃x. P(x), make sure that
c in P(c) is fresh, and
all the dependencies for c are listed.
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