

CSE 311 Lecture 06: Predicate Logic

Emina Torlak and Sami Davies

Topics

Key notions in predicate logic

A brief review of Lecture 05.

Using quantifiers

From predicate logic to English and back.

Negating quantified formulas

DeMorgan's laws for quantifiers.

Quantifier scopes

Bound and free variables.

Nested quantifiers

The quantifier order matters.

Key notions in predicate logic

A brief review of Lecture 05.

Syntax and semantics of predicate logic

Syntax

Predicate logic extends propositional logic with two key constructs: *predicates* and *quantifiers* (\exists, \forall) .

Semantics

We define the meaning of formulas in predicate logic with respect to a *domain of discourse*.

Predicates

Predicate is a function that returns a truth value.

Cat(x) ::= "x is a cat" Prime(x) ::= "x is prime" HasTaken(x, y) ::= "student x has taken course y" LessThan(x, y) ::= "x < y" Sum(x, y, z) ::= "x + y = z" GreaterThan5(x) ::= "x > 5" HasNChars(s, n) ::= "string s has length n"

Predicates can have varying arity (numbers of arguments).

But a given predicate accepts a fixed number of arguments.

Predicates can have any names.

The name does *not* determine the meaning of the predicate. So we can define Cat(x) ::= "x is an even number".

Domain of discourse

To give meaning to predicates in a formula, we define a set of objects that those predicates can take as input.

This set of objects is called the *domain of discourse* for a formula.

For each of the following, what might the domain be? "x is a cat", "x barks", "x ruined my couch" "mammals" or "sentient beings" or "cats and dogs" or ... "x is prime", "x = 0", "x < 0", "x is a power of two" "numbers" or "integers" or "integers greater than 5" or ... "student x has taken course y" "x is a pre-req for z" "students and courses" or "university entities" or ...

Quantifiers

Quantifiers let us talk about *all* or *some* objects in the domain.

 $\forall x. P(x)$

P(x) is true **for every** x in the domain.

Read as "for all x, P(x)".

Called the **universal quantifier**.

 $\exists x. P(x)$

There is an x in the domain for which P(x) is true.

Read as "there exists x, P(x)".

Called the **existential quantifier**.

Understanding quantifiers

The truth value of a quantified formula depends on the domain.

	$\{-3,3\}$	Integers	Odd Integers	
$\forall x. \operatorname{Odd}(x)$	True	False	True	
$\forall x. \text{LessThan5}(x)$	True	False	False	
	{-3,3}	Integers	Positive Multip	oles of 5
$\exists x. \operatorname{Odd}(x)$	True	True	True	
$\exists x. \text{LessThan5}(x)$	True	True	False	

You can think of $\forall x. P(x)$ as conjunction over all objects in the domain, and $\exists x. P(x)$ as disjunction over all objects in the domain.

- $\forall x. \operatorname{Odd}(x)$
 - over $\{-3, 3\}$ is the conjunction $Odd(-3) \land Odd(3)$
 - over integers is the infinite conjunction $\ldots \land Odd(-1) \land Odd(0) \land Odd(1) \land \ldots$
- $\exists x. \operatorname{Odd}(x)$
 - over $\{-3, 3\}$ is the disjunction $Odd(-3) \vee Odd(3)$
 - over integers is the infinite disjunction $\ldots \lor Odd(-1) \lor Odd(0) \lor Odd(1) \lor \ldots$

Using quantifiers

From predicate logic to English and back.

Just like with propositional logic, we need to define variables (this time predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

 $\exists x. \operatorname{Even}(x) \\ \forall x. \operatorname{Odd}(x) \\ \forall x. \operatorname{Even}(x) \lor \operatorname{Odd}(x) \\ \exists x. \operatorname{Even}(x) \land \operatorname{Odd}(x) \\ \forall x. \operatorname{Greater}(x + 1, x) \\ \exists x. \operatorname{Even}(x) \land \operatorname{Prime}(x) \end{cases}$

Just like with propositional logic, we need to define variables (this time predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

Т

 $\exists x. \operatorname{Even}(x) \\ \forall x. \operatorname{Odd}(x) \\ \forall x. \operatorname{Even}(x) \lor \operatorname{Odd}(x) \\ \exists x. \operatorname{Even}(x) \land \operatorname{Odd}(x) \\ \forall x. \operatorname{Greater}(x + 1, x) \\ \exists x. \operatorname{Even}(x) \land \operatorname{Prime}(x) \\ \end{cases}$

Just like with propositional logic, we need to define variables (this time predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

 $\exists x. Even(x)$ T $\forall x. Odd(x)$ F $\forall x. Even(x) \lor Odd(x)$ F $\exists x. Even(x) \land Odd(x)$ F $\forall x. Greater(x + 1, x)$ F $\exists x. Even(x) \land Prime(x)$ F

Just like with propositional logic, we need to define variables (this time predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

 $\exists x. Even(x)$ T $\forall x. Odd(x)$ F $\forall x. Even(x) \lor Odd(x)$ T $\exists x. Even(x) \land Odd(x)$ T $\forall x. Greater(x + 1, x)$ $\exists x. Even(x) \land Prime(x)$

Just like with propositional logic, we need to define variables (this time predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

 $\exists x. Even(x)$ T $\forall x. Odd(x)$ F $\forall x. Even(x) \lor Odd(x)$ T $\exists x. Even(x) \land Odd(x)$ F $\forall x. Greater(x + 1, x)$ $\exists x. Even(x) \land Prime(x)$

Just like with propositional logic, we need to define variables (this time predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

$\exists x. \operatorname{Even}(x)$	Т
$\forall x. \operatorname{Odd}(x)$	F
$\forall x. \operatorname{Even}(x) \lor \operatorname{Odd}(x)$	Т
$\exists x. \operatorname{Even}(x) \wedge \operatorname{Odd}(x)$	F
$\forall x. \operatorname{Greater}(x+1, x)$	Т
$\exists x. \operatorname{Even}(x) \land \operatorname{Prime}(x)$	

Just like with propositional logic, we need to define variables (this time predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

Translate the following statements to English

 $\forall x. \exists y. Greater(y, x) \land Prime(y)$

```
\forall x. \operatorname{Prime}(x) \rightarrow (\operatorname{Equal}(x, 2) \lor \operatorname{Odd}(x))
```

```
\exists x. \exists y. Sum(x, 2, y) \land Prime(x) \land Prime(y)
```

Domain of discourse Positive integers	Predicate definitions Even(x) := "x is even" Odd(x) := "x is odd" Prime(x) := "x is prime" Greater(x, y) := "x > y" Equal(x, y) := "x = y"
	Equal(x, y) := " $x = y$ " Sum(x, y, z) := " $z = x + y$ "

Translate the following statements to English

 $\forall x. \exists y. \text{Greater}(y, x) \land \text{Prime}(y)$ For every positive integer *x*, there is a positive integer *y*, such that y > x and *y* is prime. $\forall x. \text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))$

 $\exists x. \exists y. Sum(x, 2, y) \land Prime(x) \land Prime(y)$

Domain of discourse Positive integers	Predicate definitions Even(x) := "x is even" Odd(x) := "x is odd" Prime(x) := "x is prime" Greater(x, y) := "x > y" Equal(x, y) := "x = y" Sum(x, y, z) := "z = x + y"
---	---

Translate the following statements to English

 $\forall x. \exists y. \text{Greater}(y, x) \land \text{Prime}(y)$ For every positive integer *x*, there is a positive integer *y*, such that y > x and *y* is prime. $\forall x. \text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))$ For every positive integer *x*, if *x* is prime then x = 2 or *x* is odd. $\exists x. \exists y. \text{Sum}(x, 2, y) \land \text{Prime}(x) \land \text{Prime}(y)$

Domain of discourse Positive integers	Predicate definitions Even(x) := "x is even" Odd(x) := "x is odd" Prime(x) := "x is prime" Greater(x, y) := "x > y" Equal(x, y) := "x = y" Sum(x, y, z) := "z = x + y'
---	--

Translate the following statements to English

 $\forall x. \exists y. \text{Greater}(y, x) \land \text{Prime}(y)$ For every positive integer x, there is a positive integer y, such that y > x and y is prime. $\forall x. \text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))$ For every positive integer x, if x is prime then x = 2 or x is odd. $\exists x. \exists y. \text{Sum}(x, 2, y) \land \text{Prime}(x) \land \text{Prime}(y)$ There exist positive integers x and y such that x + 2 = y and x and y are prime.

Domain of discourse Positive integers	Predicate definitions Even(x) := "x is even" Odd(x) := "x is odd" Prime(x) := "x is prime" Greater(x, y) := "x > y" Equal(x, y) := "x = y" Sum(x, y, z) := "z = x + y"
---	---

Translate the following statements to English

 $\forall x. \exists y. Greater(y, x) \land Prime(y)$

```
\forall x. \operatorname{Prime}(x) \rightarrow (\operatorname{Equal}(x, 2) \lor \operatorname{Odd}(x))
```

```
\exists x. \exists y. Sum(x, 2, y) \land Prime(x) \land Prime(y)
```

Domain of discourse Positive integers	Predicate definitions Even(x) := "x is even" Odd(x) := "x is odd" Prime(x) := "x is prime" Greater(x, y) := "x > y" Equal(x, y) := "x = y" Sum(x, y, z) := "z = x + y"
--	---

Translate the following statements to English

 $\forall x. \exists y. \text{Greater}(y, x) \land \text{Prime}(y)$ For every positive integer there is a larger number that is prime. $\forall x. \text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))$

 $\exists x. \exists y. Sum(x, 2, y) \land Prime(x) \land Prime(y)$

Domain of discourse Positive integers	Predicate definitions Even(x) := "x is even" Odd(x) := "x is odd" Prime(x) := "x is prime" Greater(x, y) := "x > y" Equal(x, y) := "x = y"
	Sum(x, y, z) := "z = x + y"

Translate the following statements to English

 $\forall x. \exists y. \text{Greater}(y, x) \land \text{Prime}(y)$ For every positive integer there is a larger number that is prime. $\forall x. \text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))$ Every prime number is 2 or odd. $\exists x. \exists y. \text{Sum}(x, 2, y) \land \text{Prime}(x) \land \text{Prime}(y)$

Translate the following statements to English

 $\forall x. \exists y. \text{Greater}(y, x) \land \text{Prime}(y)$ For every positive integer there is a larger number that is prime. $\forall x. \text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))$ Every prime number is 2 or odd. $\exists x. \exists y. \text{Sum}(x, 2, y) \land \text{Prime}(x) \land \text{Prime}(y)$ There exist prime numbers that differ by two.

, "

English to predicate logic

"Orange cats like lasagna."

"Some orange cats don't like lasagna."

	Predicate definitions	• //
Domain of discourse Mammals	Cat(x) := "x is a cat" Orange(x) := "x is orange" LikesLasagna(x) := "x likes lasagna"	

English to predicate logic

"Orange cats like lasagna." $\forall x. ((Orange(x) \land Cat(x)) \rightarrow LikesLasagna(x))$

"Some orange cats don't like lasagna."

	Predicate definitions	
Domain of discourse Mammals	Cat(x) := "x is a cat" Orange(x) := "x is orange" LikesLasagna(x) := "x likes lasagna"	

English to predicate logic

"Orange cats like lasagna." $\forall x. ((Orange(x) \land Cat(x)) \rightarrow LikesLasagna(x)))$ "Some orange cats don't like lasagna." $\exists x. ((Orange(x) \land Cat(x)) \land \neg LikesLasagna(x)))$

	Predicate definitions	• //
Domain of discourse	Cat(x) := "x is a cat"	101/
Mammals	Orange(x) := "x is orange" LikesLasagna(x) := "x likes lasagna"	

English to predicate logic: translation hints

"Orange cats like lasagna."

 $\forall x. ((\operatorname{Orange}(x) \land \operatorname{Cat}(x)) \rightarrow \operatorname{LikesLasagna}(x))$

When there's no leading quantification, it means "for all".

When restricting to a smaller domain in a "for all", use implication.

"Some orange cats don't like lasagna."

 $\exists x. ((\operatorname{Orange}(x) \land \operatorname{Cat}(x)) \land \neg \operatorname{LikesLasagna}(x))$

"Some" means "there exists".

When restricting to a smaller domain in an "exists", use conjunction. When putting predicates together, like orange cats, use conjunction.

	Predicate definitions	•
Domain of discourse	Cat(x) := "x is a cat"	
Mammals	Orange(x) := "x is orange" LikesLasagna(x) := "x likes lasagna"	

Negating quantified formulas

DeMorgan's laws for quantifiers.

Domain of discourse Predicate definitions {plum, apple, ...} PurpleFruit(x) := "x is a purple fruit"

Let *P* be the formula $\forall x$. PurpleFruit(*x*), "all fruits are purple."

What is the negation of *P*?

a. "There exists a purple fruit" $(\exists x. PurpleFruit(x))$

- b. "There exists a non-purple fruit" ($\exists x. \neg PurpleFruit(x)$)
- c. "All fruits are not purple" ($\forall x. \neg PurpleFruit(x)$)

Domain of discourse Predicate definitions {plum, apple, ...} PurpleFruit(x) := "x is a purple fruit"

Let *P* be the formula $\forall x$. PurpleFruit(*x*), "all fruits are purple."

What is the negation of *P*?

a. "There exists a purple fruit" $(\exists x. PurpleFruit(x))$

- b. "There exists a non-purple fruit" ($\exists x. \neg PurpleFruit(x)$)
- c. "All fruits are not purple" ($\forall x. \neg PurpleFruit(x)$)

Key idea: think of *p* as a conjunction over all objects in the domain, negate that conjunction, and convert back to a quantified formula.

Domain of discoursePredicate definitions{plum, apple, ...}PurpleFruit(x) := "x is a purple fruit"

Let *P* be the formula $\forall x$. PurpleFruit(*x*), "all fruits are purple."

What is the negation of *P*?

a. "There exists a purple fruit" $(\exists x. PurpleFruit(x))$

- b. "There exists a non-purple fruit" ($\exists x. \neg PurpleFruit(x)$)
- c. "All fruits are not purple" ($\forall x. \neg PurpleFruit(x)$)

Key idea: think of *p* as a conjunction over all objects in the domain, negate that conjunction, and convert back to a quantified formula.

 $p \equiv PurpleFruit(plum) \land PurpleFruit(apple) \land ... \forall to conjunction$

Domain of discoursePredicate definitions{plum, apple, ...}PurpleFruit(x) := "x is a purple fruit"

Let *P* be the formula $\forall x$. PurpleFruit(*x*), "all fruits are purple."

What is the negation of *P*?

a. "There exists a purple fruit" $(\exists x. PurpleFruit(x))$

- b. "There exists a non-purple fruit" ($\exists x. \neg PurpleFruit(x)$)
- c. "All fruits are not purple" ($\forall x. \neg PurpleFruit(x)$)

Key idea: think of *p* as a conjunction over all objects in the domain, negate that conjunction, and convert back to a quantified formula.

 $p \equiv PurpleFruit(plum) \land PurpleFruit(apple) \land ...$ \forall to conjunction $\neg p \equiv \neg$ (PurpleFruit(plum) \land PurpleFruit(apple) $\land ...$) \forall to conjunction

Domain of discourse Predicate definitions {plum, apple, ...} PurpleFruit(x) := "x is a purple fruit"

Let *P* be the formula $\forall x$. PurpleFruit(*x*), "all fruits are purple."

What is the negation of *P*?

a. "There exists a purple fruit" $(\exists x. PurpleFruit(x))$

- b. "There exists a non-purple fruit" ($\exists x. \neg PurpleFruit(x)$)
- c. "All fruits are not purple" ($\forall x. \neg PurpleFruit(x)$)

Key idea: think of *p* as a conjunction over all objects in the domain, negate that conjunction, and convert back to a quantified formula.

 $p \equiv PurpleFruit(plum) \land PurpleFruit(apple) \land ...$ $\neg p \equiv \neg(PurpleFruit(plum) \land PurpleFruit(apple) \land ...)$ $\equiv \neg PurpleFruit(plum) \lor \neg PurpleFruit(apple) \lor ...$

∀ to conjunction Negate both sides DeMorgan

Domain of discourse Predicate definitions {plum, apple, ...} PurpleFruit(x) := "x is a purple fruit"

Let *P* be the formula $\forall x$. PurpleFruit(*x*), "all fruits are purple."

What is the negation of *P*?

a. "There exists a purple fruit" $(\exists x. PurpleFruit(x))$

b. "There exists a non-purple fruit" ($\exists x. \neg PurpleFruit(x)$)

c. "All fruits are not purple" ($\forall x. \neg PurpleFruit(x)$)

Key idea: think of *p* as a conjunction over all objects in the domain, negate that conjunction, and convert back to a quantified formula.

 $p \equiv PurpleFruit(plum) \land PurpleFruit(apple) \land ...$ $\neg p \equiv \neg(PurpleFruit(plum) \land PurpleFruit(apple) \land ...)$ $\equiv \neg PurpleFruit(plum) \lor \neg PurpleFruit(apple) \lor ...$ $\equiv \exists x. \neg PurpleFruit(x)$

∀ to conjunction
Negate both sides
DeMorgan
Disjunction to ∃

DeMorgan's laws for quantifiers

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$
$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$
$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$
$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

"There is no largest integer."

 $\neg \exists x. \forall y. (x \ge y) \equiv \\ \equiv \\ \equiv \forall x. \exists y. (x < y)$

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$
$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

"There is no largest integer."

$$\neg \exists x. \forall y. (x \ge y) \equiv \forall x. \neg \forall y. (x \ge y) \quad \text{DeMorgan}$$
$$\equiv \\ \equiv \\ \forall x. \exists y. (x < y)$$

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$
$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

"There is no largest integer."

$$\neg \exists x. \forall y. (x \ge y) \equiv \forall x. \neg \forall y. (x \ge y)$$
 DeMorgan
$$\equiv \forall x. \exists y. \neg (x \ge y)$$
 DeMorgan
$$\equiv \forall x. \exists y. (x < y)$$

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$
$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

"There is no largest integer."

$$\neg \exists x. \forall y. (x \ge y) \equiv \forall x. \neg \forall y. (x \ge y)$$
 DeMorgan
$$\equiv \forall x. \exists y. \neg (x \ge y)$$
 DeMorgan
$$\equiv \forall x. \exists y. (x < y)$$
 Semantics of >

Quantifier scopes

Bound and free variables.

Scope of quantifiers

$\exists x. (P(x) \land Q(x))$

vs $(\exists x. P(x)) \land (\exists x. Q(x))$

Scope of quantifiers

 $\exists \mathbf{x}. (P(\mathbf{x}) \land Q(\mathbf{x}))$

There is an object in the domain for which both P and Q are true.

 $(\exists x. P(x)) \land (\exists x. Q(x))$

VS

There is an object for which P is true and an object for which Q is true, and they may be different objects.

The formula inside of a quantifier is called its scope.

A variable is *bound* if it is in the scope of some quantifier.

A variable is *free* if it isn't in the scope of any quantifier.

Example: $\forall y. ((\exists x. P(x)) \rightarrow Q(x,y))$ Is y in Q(x, y) bound or free? Is x in P(x) bound or free? Is x in Q(x, y) bound or free?

The formula inside of a quantifier is called its scope.

A variable is *bound* if it is in the scope of some quantifier.

A variable is *free* if it isn't in the scope of any quantifier.

Example: $\forall y. ((\exists x. P(x)) \rightarrow Q(x,y))$ Is y in Q(x, y) bound or free? Bound. Is x in P(x) bound or free? Is x in Q(x, y) bound or free?

The formula inside of a quantifier is called its scope.

A variable is *bound* if it is in the scope of some quantifier.

A variable is *free* if it isn't in the scope of any quantifier.

Example: $\forall y. ((\exists x. P(x)) \rightarrow Q(x,y))$ Is y in Q(x, y) bound or free? Bound. Is x in P(x) bound or free? Bound. Is x in Q(x, y) bound or free?

The formula inside of a quantifier is called its scope.

A variable is *bound* if it is in the scope of some quantifier.

A variable is *free* if it isn't in the scope of any quantifier.

Example: $\forall y. ((\exists x. P(x)) \rightarrow Q(x,y))$ Is y in Q(x, y) bound or free? Bound. Is x in P(x) bound or free? Bound. Is x in Q(x, y) bound or free? Free.

Quantifier "style"

$\forall \mathbf{x}. (\exists \mathbf{y}. (P(\mathbf{x}, \mathbf{y}) \to \forall \mathbf{x}. Q(\mathbf{y}, \mathbf{x})))$

This isn't wrong, but it's confusing. Help your reader by using unique names for quantified variables. Names are cheap :)

Nested quantifiers

The quantifier order matters.

Bound variable names don't matter.

Quantifiers can sometimes move within the enclosing formula.

Bound variable names don't matter. $\forall x. \exists y. P(x, y) \equiv \forall a. \exists b. P(a, b)$

Quantifiers can sometimes move within the enclosing formula.

Bound variable names don't matter.

 $\forall x. \exists y. P(x, y) \equiv \forall a. \exists b. P(a, b)$

Quantifiers can sometimes move within the enclosing formula.

 $- \forall x. (Q(x) \land \exists y. P(x, y)) \equiv \forall x. \exists y. (Q(x) \land P(x, y))$

Bound variable names don't matter.

 $\forall x. \exists y. P(x, y) \equiv \forall a. \exists b. P(a, b)$

Quantifiers can sometimes move within the enclosing formula.

$$\neg \forall x. (Q(x) \land \exists y. P(x, y)) \equiv \forall x. \exists y. (Q(x) \land P(x, y))$$

$$\neg \forall x. (Q(x) \land (\neg \exists y. P(x, y))) \not\equiv \forall x. \exists y. (Q(x) \land \neg P(x, y))$$

Bound variable names don't matter.

 $\forall x. \exists y. P(x, y) \equiv \forall a. \exists b. P(a, b)$

Quantifiers can sometimes move within the enclosing formula.

$$\forall x. (Q(x) \land \exists y. P(x, y)) \equiv \forall x. \exists y. (Q(x) \land P(x, y))$$

$$\forall x. (Q(x) \land (\neg \exists y. P(x, y))) \not\equiv \forall x. \exists y. (Q(x) \land \neg P(x, y))$$

But the order of quantifiers is important.

Example: are these formulas true or false? $\exists x. \forall y. \text{GreaterEq}(x, y)$ $\forall y. \exists x. \text{GreaterEq}(x, y)$

Domain of discourse Integers Predicate definitions $GreaterEq(x, y) := "x \ge y"$

Bound variable names don't matter.

 $\forall x. \exists y. P(x, y) \equiv \forall a. \exists b. P(a, b)$

Quantifiers can sometimes move within the enclosing formula.

$$\neg \forall x. (Q(x) \land \exists y. P(x, y)) \equiv \forall x. \exists y. (Q(x) \land P(x, y))$$

$$\neg \forall x. (Q(x) \land (\neg \exists y. P(x, y))) \not\equiv \forall x. \exists y. (Q(x) \land \neg P(x, y))$$

But the order of quantifiers is important.

 $\forall y. \exists x. \text{GreaterEq}(x, y)$

Domain of discourse Integers Predicate definitions $GreaterEq(x, y) := "x \ge y"$

Bound variable names don't matter.

 $\forall x. \exists y. P(x, y) \equiv \forall a. \exists b. P(a, b)$

Quantifiers can sometimes move within the enclosing formula.

$$\neg \forall x. (Q(x) \land \exists y. P(x, y)) \equiv \forall x. \exists y. (Q(x) \land P(x, y))$$

$$\neg \forall x. (Q(x) \land (\neg \exists y. P(x, y))) \not\equiv \forall x. \exists y. (Q(x) \land \neg P(x, y))$$

But the order of quantifiers is important.

Domain of discourse Integers Predicate definitions $GreaterEq(x, y) := "x \ge y"$

Quantification with two variables

Formula	When true	When false
$\forall x. \forall y. P(x, y)$	Every pair is true.	At least one pair is false.
$\exists x. \exists y. P(x, y)$	At least one pair is true.	All pairs are false.
$\forall x. \exists y. P(x, y)$	Every <i>x</i> has a corresponding <i>y</i> .	Some <i>x</i> doesn't have a <i>y</i> .
$\exists y. \forall x. P(x, y)$	A particular y works for every x.	Every y has an x that makes $P(x, y)$ false.

Quantification with two variables

Formula	When true	When false
$\forall x. \forall y. P(x, y)$	Every pair is true.	At least one pair is false.
$\exists x. \exists y. P(x, y)$	At least one pair is true.	All pairs are false.
$\forall x. \exists y. P(x, y)$	Every <i>x</i> has a corresponding <i>y</i> .	Some <i>x</i> doesn't have a <i>y</i> .
$\exists y. \forall x. P(x, y)$	A particular <i>y</i> works for every <i>x</i> .	Every y has an x that makes $P(x, y)$ false.

This is the form of the program synthesis query!

 $\exists P. \forall x. S(x, P(x))$ "There is a program *P* that satisfies the spec *S* on every input *x*."

Summary

Predicate logic adds predicates and quantifiers to propositional logic.

Predicate is a function that returns a truth value.

Quantifiers let us talk about *all* (\forall) or *some* (\exists) objects in the domain.

The domain of discourse is the set of objects over which the predicates and quantifiers in a formula are evaluated.

When using quantifiers, keep in mind

the DeMorgan's laws for negating quantified formulas, which variables are free and bound, and the order of quantifiers.