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Syntax and semantics of predicate logicSyntax and semantics of predicate logic

Syntax
Predicate logic extends propositional logic with two key
constructs: predicates and quantifiers ( ).

Semantics
We define the meaning of formulas in predicate logic with
respect to a domain of discourse.

∃, ∀
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PredicatesPredicates

Predicate is a function that returns a truth value.
Cat(x)  “x is a cat”
Prime(x)  “x is prime”
HasTaken(x, y)  “student x has taken course y”
LessThan(x, y)  “x < y”
Sum(x, y, z)  “x + y = z”
GreaterThan5(x)  “x > 5”
HasNChars(s, n)  “string s has length n”

Predicates can have varying arity (numbers of arguments).
But a given predicate accepts a fixed number of arguments.

Predicates can have any names.
The name does not determine the meaning of the predicate.
So we can define Cat(x)  “x is an even number”.

::=

::=

::=

::=

::=

::=

::=

::=
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Domain of discourseDomain of discourse
To give meaning to predicates in a formula, we define a set of objects that
those predicates can take as input.

This set of objects is called the domain of discourse for a formula.

For each of the following, what might the domain be?
“x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or …
“x is prime”, “x = 0”, “x < 0”, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or …
“student x has taken course y” “x is a pre-req for z”
“students and courses” or “university entities” or …
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QuantifiersQuantifiers

Quantifiers let us talk about all or some objects in the domain.
 

 is true for every  in the domain.
Read as “for all , ”.
Called the universal quantifier.

There is an  in the domain for which  is true.
Read as “there exists , ”.
Called the existential quantifier.

∀x. P(x)

P(x) x

x P(x)

∃x. P(x)

x P(x)

x P(x)

7



Understanding quantifiersUnderstanding quantifiers
The truth value of a quantified formula depends on the domain.

  Integers Odd Integers
True False True
True False False

  Integers Positive Multiples of 5
True True True
True True False

You can think of  as conjunction over all objects in the domain, and
 as disjunction over all objects in the domain.

over  is the conjunction 
over integers is the infinite conjunction 

over  is the disjunction 
over integers is the infinite disjunction 

{−3, 3}

∀x. Odd(x)

∀x. LessThan5(x)

{−3, 3}

∃x. Odd(x)

∃x. LessThan5(x)

∀x. P(x)

∃x. P(x)

∀x. Odd(x)

{−3, 3} Odd(−3) ∧ Odd(3)

… ∧ Odd(−1) ∧ Odd(0) ∧ Odd(1) ∧ …

∃x. Odd(x)

{−3, 3} Odd(−3) ∨ Odd(3)

… ∨ Odd(−1) ∨ Odd(0) ∨ Odd(1) ∨ …
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Using quantifiersUsing quantifiers
From predicate logic to English and back.

9



Statements with quantifiersStatements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

∃x. Even(x)

∀x. Odd(x)

∀x. Even(x) ∨ Odd(x)

∃x. Even(x) ∧ Odd(x)

∀x. Greater(x + 1, x)

∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x)  “x is even”
Odd(x)  “x is odd”
Prime(x)  “x is prime”
Greater(x, y)  “x > y”
Equal(x, y)  “x = y”
Sum(x, y, z)  “z = x + y”

:=

:=

:=

:=

:=

:=
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Predicate logic to English: literal translationsPredicate logic to English: literal translations

Translate the following statements to English
∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x)  “x is even”
Odd(x)  “x is odd”
Prime(x)  “x is prime”
Greater(x, y)  “x > y”
Equal(x, y)  “x = y”
Sum(x, y, z)  “z = x + y”

:=

:=

:=

:=

:=

:=
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Predicate logic to English: literal translationsPredicate logic to English: literal translations

Translate the following statements to English

For every positive integer , there is a positive integer , such that  and  is prime.
∀x. ∃y. Greater(y, x) ∧ Prime(y)

x y y > x y
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:=

:=

:=

:=

:=

:=
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Predicate logic to English: literal translationsPredicate logic to English: literal translations

Translate the following statements to English
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For every positive integer , if  is prime then  or  is odd.

∀x. ∃y. Greater(y, x) ∧ Prime(y)
x y y > x y

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))
x x x = 2 x

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)
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Positive integers
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Even(x)  “x is even”
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Predicate logic to English: literal translationsPredicate logic to English: literal translations

Translate the following statements to English

For every positive integer , there is a positive integer , such that  and  is prime.

For every positive integer , if  is prime then  or  is odd.

There exist positive integers  and  such that  and  and  are prime.

∀x. ∃y. Greater(y, x) ∧ Prime(y)
x y y > x y

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))
x x x = 2 x

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)
x y x + 2 = y x y

Domain of discourse
Positive integers

Predicate definitions
Even(x)  “x is even”
Odd(x)  “x is odd”
Prime(x)  “x is prime”
Greater(x, y)  “x > y”
Equal(x, y)  “x = y”
Sum(x, y, z)  “z = x + y”

:=

:=

:=

:=

:=

:=
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Predicate logic to English: natural translationsPredicate logic to English: natural translations

Translate the following statements to English
∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x)  “x is even”
Odd(x)  “x is odd”
Prime(x)  “x is prime”
Greater(x, y)  “x > y”
Equal(x, y)  “x = y”
Sum(x, y, z)  “z = x + y”

:=

:=

:=

:=

:=

:=
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Predicate logic to English: natural translationsPredicate logic to English: natural translations

Translate the following statements to English

For every positive integer there is a larger number that is prime.
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Prime(x)  “x is prime”
Greater(x, y)  “x > y”
Equal(x, y)  “x = y”
Sum(x, y, z)  “z = x + y”
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:=

:=

:=

:=

:=
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Predicate logic to English: natural translationsPredicate logic to English: natural translations

Translate the following statements to English

For every positive integer there is a larger number that is prime.

Every prime number is 2 or odd.

∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers
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Odd(x)  “x is odd”
Prime(x)  “x is prime”
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:=

:=

:=

:=

:=
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Predicate logic to English: natural translationsPredicate logic to English: natural translations

Translate the following statements to English

For every positive integer there is a larger number that is prime.

Every prime number is 2 or odd.

There exist prime numbers that differ by two.

∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x)  “x is even”
Odd(x)  “x is odd”
Prime(x)  “x is prime”
Greater(x, y)  “x > y”
Equal(x, y)  “x = y”
Sum(x, y, z)  “z = x + y”

:=

:=

:=

:=

:=

:=
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English to predicate logicEnglish to predicate logic

“Orange cats like lasagna.”

“Some orange cats don’t like lasagna.”

Domain of discourse
Mammals

Predicate definitions
Cat(x)  “x is a cat”
Orange(x)  “x is orange”
LikesLasagna(x)  “x likes lasagna”

:=

:=

:=
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English to predicate logicEnglish to predicate logic

“Orange cats like lasagna.”

“Some orange cats don’t like lasagna.”
∀x. ((Orange(x) ∧ Cat(x)) → LikesLasagna(x))

Domain of discourse
Mammals

Predicate definitions
Cat(x)  “x is a cat”
Orange(x)  “x is orange”
LikesLasagna(x)  “x likes lasagna”

:=

:=

:=
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English to predicate logicEnglish to predicate logic

“Orange cats like lasagna.”

“Some orange cats don’t like lasagna.”
∀x. ((Orange(x) ∧ Cat(x)) → LikesLasagna(x))

∃x. ((Orange(x) ∧ Cat(x)) ∧ ¬LikesLasagna(x))

Domain of discourse
Mammals

Predicate definitions
Cat(x)  “x is a cat”
Orange(x)  “x is orange”
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:=

:=

:=
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English to predicate logic: translation hintsEnglish to predicate logic: translation hints

“Orange cats like lasagna.”

When there’s no leading quantification, it means “for all”.
When restricting to a smaller domain in a “for all”, use implication.

“Some orange cats don’t like lasagna.”

“Some” means “there exists”.
When restricting to a smaller domain in an “exists”, use conjunction.
When putting predicates together, like orange cats, use conjunction.

∀x. ((Orange(x) ∧ Cat(x)) → LikesLasagna(x))

∃x. ((Orange(x) ∧ Cat(x)) ∧ ¬LikesLasagna(x))

Domain of discourse
Mammals

Predicate definitions
Cat(x)  “x is a cat”
Orange(x)  “x is orange”
LikesLasagna(x)  “x likes lasagna”

:=

:=

:=
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Negating quantified formulasNegating quantified formulas
DeMorgan’s laws for quantifiers.
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Negations of quantifiersNegations of quantifiers

Let  be the formula , “all fruits are purple.”

What is the negation of ?

a. “There exists a purple fruit” ( )
b. “There exists a non-purple fruit” ( )
c. “All fruits are not purple” ( )

 
 

Domain of discourse
{plum, apple, …}

Predicate definitions
PurpleFruit(x)  “x is a purple fruit”:=

P ∀x. PurpleFruit(x)

P

∃x. PurpleFruit(x)

∃x. ¬PurpleFruit(x)

∀x. ¬PurpleFruit(x)
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Negations of quantifiersNegations of quantifiers

Let  be the formula , “all fruits are purple.”

What is the negation of ?

a. “There exists a purple fruit” ( )
b. “There exists a non-purple fruit” ( )
c. “All fruits are not purple” ( )

Key idea: think of  as a conjunction over all objects in the domain, negate
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 to conjunction

 
 

Domain of discourse
{plum, apple, …}
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P

∃x. PurpleFruit(x)

∃x. ¬PurpleFruit(x)
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p

p ≡ PurpleFruit(plum) ∧ PurpleFruit(apple) ∧ … ∀

16



Negations of quantifiersNegations of quantifiers

Let  be the formula , “all fruits are purple.”

What is the negation of ?

a. “There exists a purple fruit” ( )
b. “There exists a non-purple fruit” ( )
c. “All fruits are not purple” ( )

Key idea: think of  as a conjunction over all objects in the domain, negate
that conjunction, and convert back to a quantified formula.

 to conjunction
Negate both sides

 
 

Domain of discourse
{plum, apple, …}

Predicate definitions
PurpleFruit(x)  “x is a purple fruit”:=

P ∀x. PurpleFruit(x)

P

∃x. PurpleFruit(x)

∃x. ¬PurpleFruit(x)

∀x. ¬PurpleFruit(x)

p

p ≡ PurpleFruit(plum) ∧ PurpleFruit(apple) ∧ … ∀

¬p ≡ ¬(PurpleFruit(plum) ∧ PurpleFruit(apple) ∧ …)

16



Negations of quantifiersNegations of quantifiers

Let  be the formula , “all fruits are purple.”

What is the negation of ?

a. “There exists a purple fruit” ( )
b. “There exists a non-purple fruit” ( )
c. “All fruits are not purple” ( )

Key idea: think of  as a conjunction over all objects in the domain, negate
that conjunction, and convert back to a quantified formula.

 to conjunction
Negate both sides

  DeMorgan
 

Domain of discourse
{plum, apple, …}

Predicate definitions
PurpleFruit(x)  “x is a purple fruit”:=

P ∀x. PurpleFruit(x)

P

∃x. PurpleFruit(x)

∃x. ¬PurpleFruit(x)

∀x. ¬PurpleFruit(x)

p

p ≡ PurpleFruit(plum) ∧ PurpleFruit(apple) ∧ … ∀

¬p ≡ ¬(PurpleFruit(plum) ∧ PurpleFruit(apple) ∧ …)

≡ ¬PurpleFruit(plum) ∨ ¬PurpleFruit(apple) ∨ …

16



Negations of quantifiersNegations of quantifiers

Let  be the formula , “all fruits are purple.”

What is the negation of ?

a. “There exists a purple fruit” ( )
b. “There exists a non-purple fruit” ( )
c. “All fruits are not purple” ( )

Key idea: think of  as a conjunction over all objects in the domain, negate
that conjunction, and convert back to a quantified formula.

 to conjunction
Negate both sides

  DeMorgan
  Disjunction to 

Domain of discourse
{plum, apple, …}

Predicate definitions
PurpleFruit(x)  “x is a purple fruit”:=

P ∀x. PurpleFruit(x)

P

∃x. PurpleFruit(x)

∃x. ¬PurpleFruit(x)

∀x. ¬PurpleFruit(x)

p

p ≡ PurpleFruit(plum) ∧ PurpleFruit(apple) ∧ … ∀

¬p ≡ ¬(PurpleFruit(plum) ∧ PurpleFruit(apple) ∧ …)

≡ ¬PurpleFruit(plum) ∨ ¬PurpleFruit(apple) ∨ …

≡ ∃x. ¬PurpleFruit(x) ∃

16



DeMorgan’s laws for quantifiersDeMorgan’s laws for quantifiers

¬∀x. P(x) ≡ ∃x. ¬P(x)

¬∃x. P(x) ≡ ∀x. ¬P(x)
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DeMorgan’s laws for quantifiersDeMorgan’s laws for quantifiers

“There is no largest integer.”

“For every integer there is a larger integer.”

¬∀x. P(x) ≡ ∃x. ¬P(x)

¬∃x. P(x) ≡ ∀x. ¬P(x)

¬∃x. ∀y. (x ≥ y) ≡

≡

≡ ∀x. ∃y. (x < y)
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DeMorgan’s laws for quantifiersDeMorgan’s laws for quantifiers

“There is no largest integer.”

DeMorgan
DeMorgan
Semantics of 

“For every integer there is a larger integer.”
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Quantifier scopesQuantifier scopes
Bound and free variables.
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Scope of quantifiersScope of quantifiers

vs
∃x. (P(x)∧Q(x))

(∃x. P(x)) ∧ (∃x. Q(x))
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Scope of quantifiersScope of quantifiers

There is an object in the
domain for which both  and 

 are true.

vs

There is an object for which 
is true and an object for which 

 is true, and they may be
different objects.

∃x. (P(x)∧Q(x))

P

Q

(∃x. P(x)) ∧ (∃x. Q(x))

P

Q
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Understanding scope of quantifiersUnderstanding scope of quantifiers
The formula inside of a quantifier is called its scope.

A variable is bound if it is in the scope of some quantifier.

A variable is free if it isn’t in the scope of any quantifier.

Example: 
Is  in  bound or free? 
Is  in  bound or free? 
Is  in  bound or free? 

∀y. ((∃x. P(x)) → Q(x,y))

y Q(x, y)

x P(x)

x Q(x, y)
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Quantifier “style”Quantifier “style”

∀x. (∃y. (P(x, y) → ∀x. Q(y, x)))

This isn’t wrong, but it’s confusing. Help
your reader by using unique names for
quantified variables. Names are cheap :)
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Nested quantifiersNested quantifiers
The quantifier order matters.
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When nesting quantifiers …When nesting quantifiers …

Bound variable names don’t matter.

Quantifiers can sometimes move within the enclosing formula.

But the order of quantifiers is important.
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Example: are these formulas true or false?
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∀x. (Q(x) ∧ (¬∃y. P(x, y))) ≢ ∀x. ∃y. (Q(x) ∧ ¬P(x, y))

∃x. ∀y. GreaterEq(x, y)

∀y. ∃x. GreaterEq(x, y)

Domain of discourse
Integers

Predicate definitions
GreaterEq(x, y)  “x  y”:= ≥
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∃x. ∀y. GreaterEq(x, y) 𝖥

∀y. ∃x. GreaterEq(x, y) 𝖳

Domain of discourse
Integers

Predicate definitions
GreaterEq(x, y)  “x  y”:= ≥
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Quantification with two variablesQuantification with two variables
Formula When true When false

Every pair is true. At least one pair is false.
At least one pair is true. All pairs are false.
Every  has a corresponding . Some  doesn’t have a .
A particular  works for every . Every  has an  that makes  false.

∀x. ∀y. P(x, y)

∃x. ∃y. P(x, y)

∀x. ∃y. P(x, y) x y x y

∃y. ∀x. P(x, y) y x y x P(x, y)
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Quantification with two variablesQuantification with two variables
Formula When true When false

Every pair is true. At least one pair is false.
At least one pair is true. All pairs are false.
Every  has a corresponding . Some  doesn’t have a .
A particular  works for every . Every  has an  that makes  false.

∀x. ∀y. P(x, y)

∃x. ∃y. P(x, y)

∀x. ∃y. P(x, y) x y x y

∃y. ∀x. P(x, y) y x y x P(x, y)

This is the form of the program synthesis query!

“There is a program  that satisfies the spec  on every input .”
∃P. ∀x. S(x, P(x))

P S x
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SummarySummary
Predicate logic adds predicates and quantifiers to propositional logic.

Predicate is a function that returns a truth value.
Quantifiers let us talk about all ( ) or some ( ) objects in the domain.
The domain of discourse is the set of objects over which the predicates and
quantifiers in a formula are evaluated.

When using quantifiers, keep in mind
the DeMorgan’s laws for negating quantified formulas,
which variables are free and bound, and
the order of quantifiers.

∀ ∃
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