
CSE 311 Lecture 04: BooleanCSE 311 Lecture 04: Boolean
AlgebraAlgebra

 and Emina Torlak Sami Davies

1

https://homes.cs.washington.edu/~emina/
http://samidavies.com/

TopicsTopics
Equivalence and proofs

A brief review of .
Boolean algebra

A notation for combinational circuits.
Simplification and proofs

Optimizing circuits and proving theorems.

Lecture 03

2

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture03.html

Equivalence and proofsEquivalence and proofs
A brief review of .Lecture 03

3

http://127.0.0.1:4000/courses/cse311/20sp/lectures/lecture03.html

Equivalence via truth tables and proofsEquivalence via truth tables and proofs
 is an assertion that two propositions and have the same truth

values in all possible cases.

 and have the same meaning.

Checking equivalence has many real-world applications.
Verification, optimization, and more!

There are two ways to check equivalence of propositional formulas.
Brute-force: compare their truth tables.
Proof-based: apply equivalences to transform one into the other.

A ≡ B A B

A ≡ B (A ↔ B) ≡ 𝖳
  

𝗍𝖺𝗎𝗍𝗈𝗅𝗈𝗀𝗒

4

Example: show tautology with a Example: show tautology with a truth tabletruth table and proof and proof

A truth table for .

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ 𝖳

p q p ∧ q q ∨ p (p ∧ q) → (q ∨ p)

𝖥 𝖥 𝖥 𝖥 𝖳

𝖥 𝖳 𝖥 𝖳 𝖳

𝖳 𝖥 𝖥 𝖳 𝖳

𝖳 𝖳 𝖳 𝖳 𝖳

5

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡

≡

≡

≡

≡

≡

≡

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡

≡

≡

≡

≡

≡

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡

≡

≡

≡

≡

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan
Associativity

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡ ¬p ∨ (¬q ∨ (q ∨ p))

≡

≡

≡

≡

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan
Associativity
Associativity

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡ ¬p ∨ (¬q ∨ (q ∨ p))

≡ ¬p ∨ ((¬q ∨ q) ∨ p)

≡

≡

≡

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan
Associativity
Associativity
Commutativity

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡ ¬p ∨ (¬q ∨ (q ∨ p))

≡ ¬p ∨ ((¬q ∨ q) ∨ p)

≡ ¬p ∨ (p ∨ (¬q ∨ q))

≡

≡

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan
Associativity
Associativity
Commutativity
Associativity

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡ ¬p ∨ (¬q ∨ (q ∨ p))

≡ ¬p ∨ ((¬q ∨ q) ∨ p)

≡ ¬p ∨ (p ∨ (¬q ∨ q))

≡ (¬p ∨ p) ∨ (¬q ∨ q)

≡

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan
Associativity
Associativity
Commutativity
Associativity
Commutativity (twice)

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡ ¬p ∨ (¬q ∨ (q ∨ p))

≡ ¬p ∨ ((¬q ∨ q) ∨ p)

≡ ¬p ∨ (p ∨ (¬q ∨ q))

≡ (¬p ∨ p) ∨ (¬q ∨ q)

≡ (p ∨ ¬p) ∨ (q ∨ ¬q)

≡

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan
Associativity
Associativity
Commutativity
Associativity
Commutativity (twice)
Negation (twice)

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡ ¬p ∨ (¬q ∨ (q ∨ p))

≡ ¬p ∨ ((¬q ∨ q) ∨ p)

≡ ¬p ∨ (p ∨ (¬q ∨ q))

≡ (¬p ∨ p) ∨ (¬q ∨ q)

≡ (p ∨ ¬p) ∨ (q ∨ ¬q)

≡ 𝖳 ∨ 𝖳

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Example: show tautology with a truth table and Example: show tautology with a truth table and proofproof

Law of implication
DeMorgan
Associativity
Associativity
Commutativity
Associativity
Commutativity (twice)
Negation (twice)
Idempotence

DeMorgan’s laws

Law of implication

Contrapositive

Biconditional

Double negation

Identity

Domination

Idempotence

Commutativity

Associativity

Distributivity

Absorption

Negation

(p ∧ q) → (q ∨ p)

(p ∧ q) → (q ∨ p) ≡ ¬(p ∧ q) ∨ (q ∨ p)

≡ (¬p ∨ ¬q) ∨ (q ∨ p)

≡ ¬p ∨ (¬q ∨ (q ∨ p))

≡ ¬p ∨ ((¬q ∨ q) ∨ p)

≡ ¬p ∨ (p ∨ (¬q ∨ q))

≡ (¬p ∨ p) ∨ (¬q ∨ q)

≡ (p ∨ ¬p) ∨ (q ∨ ¬q)

≡ 𝖳 ∨ 𝖳

≡ 𝖳

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p → q) ∧ (q → p)

p ≡ ¬¬p

p ∧ 𝖳 ≡ p
p ∨ 𝖥 ≡ p

p ∧ 𝖥 ≡ 𝖥
p ∨ 𝖳 ≡ 𝖳

p ∧ p ≡ p
p ∨ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

p ∧ ¬p ≡ 𝖥
p ∨ ¬p ≡ 𝖳

6

Truth tables versus proofsTruth tables versus proofs
Proofs are not smaller than truth tables where there are a few propositional
variables.

But proofs are usually much smaller when there are many variables.

We can extend the proof method to reason about richer logics for which truth
tables don’t apply.

Theorem provers use a combination of search (truth tables) and deduction
(proofs) to automate equivalence checking.

7

Boolean algebraBoolean algebra
A notation for combinational circuits.

8

Recall the relationship between logic and circuits …Recall the relationship between logic and circuits …
Digital circuits implement propositional logic:

 corresponds to 1 or high voltage.
 corresponds to 0 or low voltage.

Digital circuits are functions that

take values 0/1 as inputs and produce 0/1 as output;
, where is built out of wires and gates; and

every bit of output is computed from some bits of the input.

𝖳

𝖥

out = F(input) F

9

Recall the relationship between logic and circuits …Recall the relationship between logic and circuits …
Digital circuits implement propositional logic:

 corresponds to 1 or high voltage.
 corresponds to 0 or low voltage.

Digital circuits are functions that

take values 0/1 as inputs and produce 0/1 as output;
, where is built out of wires and gates; and

every bit of output is computed from some bits of the input.

𝖳

𝖥

out = F(input) F

We call these types of digital circuits combinational logic circuits. There
are other kinds of digital circuits (called sequential circuits) but we’ll focus
on combinational circuits in this course.

9

Boolean algebra is a notation for combinational logicBoolean algebra is a notation for combinational logic
Think of it as a notation for propositional logic used in circuit design.

Boolean algebra consists of the following elements and operations:

a set of elements ,
binary operations ,
a unary operation .

B = {0, 1}

{+, ⋅}

{ }′

These correspond to the truth
values , and the logical
connectives .

{𝖥, 𝖳}

∨, ∧, ¬

10

Boolean algebra is a notation for combinational logicBoolean algebra is a notation for combinational logic
Think of it as a notation for propositional logic used in circuit design.

Boolean algebra consists of the following elements and operations:

a set of elements ,
binary operations ,
a unary operation .

Boolean operations satisfy the following axioms for any :

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

B = {0, 1}

{+, ⋅}

{ }′

These correspond to the truth
values , and the logical
connectives .

{𝖥, 𝖳}

∨, ∧, ¬

a, b, c ∈ B

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

10

Example: from Example: from specspec to code to logic to circuits to code to logic to circuits
Suppose that we want to compute the number of lectures or sections
remaining at the start of a given day of the week.

11

Example: from Example: from specspec to code to logic to circuits to code to logic to circuits
Suppose that we want to compute the number of lectures or sections
remaining at the start of a given day of the week.

The function for this computation has the following signature:

Inputs: day of the week (integers from 0 to 6), lecture flag (boolean).
Output: number of sessions le� (integer from 0 to 3).

11

Example: from Example: from specspec to code to logic to circuits to code to logic to circuits
Suppose that we want to compute the number of lectures or sections
remaining at the start of a given day of the week.

The function for this computation has the following signature:

Inputs: day of the week (integers from 0 to 6), lecture flag (boolean).
Output: number of sessions le� (integer from 0 to 3).

Here are some examples of the function’s input/output behavior:

Input: (Wednesday, Lecture), Output: 2
Input: (Monday, Section), Output: 1

How would you implement this function in Java?

11

From spec to From spec to … …codecode
public class Sessions {

 public static int classesLeft(int day, boolean lecture) {
 switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: //case 6: // SATURDAY
 return lecture ? 0 : 0;
 }
 }

 public static void main(String []args){
 System.out.println("(W, L) -> " + classesLeft(3,true));
 System.out.println("(M, S) -> " + classesLeft(1,false));
 }
}

12

http://tpcg.io/hXxbka

From spec to From spec to … …

Suppose that we need this function to run really fast …

codecode
public class Sessions {

 public static int classesLeft(int day, boolean lecture) {
 switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: //case 6: // SATURDAY
 return lecture ? 0 : 0;
 }
 }

 public static void main(String []args){
 System.out.println("(W, L) -> " + classesLeft(3,true));
 System.out.println("(M, S) -> " + classesLeft(1,false));
 }
}

12

http://tpcg.io/hXxbka

From spec to From spec to … …

Suppose that we need this function to run really fast … To do that, we’ll
implement a custom circuit (hardware accelerator!).

codecode
public class Sessions {

 public static int classesLeft(int day, boolean lecture) {
 switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: //case 6: // SATURDAY
 return lecture ? 0 : 0;
 }
 }

 public static void main(String []args){
 System.out.println("(W, L) -> " + classesLeft(3,true));
 System.out.println("(M, S) -> " + classesLeft(1,false));
 }
}

12

http://tpcg.io/hXxbka

From code to combinational logic …From code to combinational logic …
Recall the signature of our function:

Inputs: day of the week (integers from 0 to 6), lecture flag (boolean).
Output: number of sessions le� (integer from 0 to 3).

How many bits for each input/output?

13

From code to combinational logic …From code to combinational logic …
Recall the signature of our function:

Inputs: day of the week (integers from 0 to 6), lecture flag (boolean).
Output: number of sessions le� (integer from 0 to 3).

How many bits for each input/output?

Inputs: 3 bits for day of the week, 1 bit for the lecture flag.
Output: 2 bits for the number of sessions le�.

day lecture

count

d 2 d 1 Ld 0
c1 c 0

13

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0
SUN 000 1
MON 001 0
MON 001 1
TUE 010 0
TUE 010 1
WED 011 0
WED 011 1
THU 100 0
THU 100 1
FRI 101 0
FRI 101 1
SAT 110 0
SAT 110 1
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0
MON 001 1
TUE 010 0
TUE 010 1
WED 011 0
WED 011 1
THU 100 0
THU 100 1
FRI 101 0
FRI 101 1
SAT 110 0
SAT 110 1
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0
TUE 010 1
WED 011 0
WED 011 1
THU 100 0
THU 100 1
FRI 101 0
FRI 101 1
SAT 110 0
SAT 110 1
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0
WED 011 1
THU 100 0
THU 100 1
FRI 101 0
FRI 101 1
SAT 110 0
SAT 110 1
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0
THU 100 1
FRI 101 0
FRI 101 1
SAT 110 0
SAT 110 1
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0
FRI 101 1
SAT 110 0
SAT 110 1
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0
SAT 110 1
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00
- 111 0
- 111 1

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to combinational logic via a From code to combinational logic via a truth tabletruth table

day lecture

count

d 2 d 1 Ld 0
c1 c 0

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00
- 111 0 00
- 111 1 00

switch (day) {
 case 0: // SUNDAY
 case 1: // MONDAY
 return lecture ? 3 : 1;
 case 2: // TUESDAY
 case 3: // WEDNESDAY
 return lecture ? 2 : 1;
 case 4: // THURSDAY
 return lecture ? 1 : 1;
 case 5: // FRIDAY
 return lecture ? 1 : 0;
 default: // SATURDAY etc.
 return lecture ? 0 : 0;
}

d2d1d0 L c1c0

14

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

To find an expression for , look at the rows where .

==000 && L==1
==001 && L==1
==010 && L==1
==011 && L==1

cc11

d2d1d0 L c1c0 c1 = 1c1

d2d1d0

d2d1d0

d2d1d0

d2d1d0

15

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

To find an expression for , look at the rows where .

==000 && L==1
==001 && L==1
==010 && L==1
==011 && L==1

Split up the bits of the day to get a formula for each row.

==0 && ==0 && ==0 && L==1
==0 && ==0 && ==1 && L==1
==0 && ==1 && ==0 && L==1
==0 && ==1 && ==1 && L==1

cc11

d2d1d0 L c1c0 c1 = 1c1

d2d1d0

d2d1d0

d2d1d0

d2d1d0

d2 d1 d0

d2 d1 d0

d2 d1 d0

d2 d1 d0

15

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

To find an expression for , look at the rows where .

==000 && L==1
==001 && L==1
==010 && L==1
==011 && L==1

Split up the bits of the day to get a formula for each row.

==0 && ==0 && ==0 && L==1
==0 && ==0 && ==1 && L==1
==0 && ==1 && ==0 && L==1
==0 && ==1 && ==1 && L==1

Translate to Boolean algebra to get an expression for .

cc11

d2d1d0 L c1c0 c1 = 1c1

d2d1d0

d2d1d0

d2d1d0

d2d1d0

d2 d1 d0

d2 d1 d0

d2 d1 d0

d2 d1 d0

c1

⋅ ⋅ ⋅ Ld ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ Ld ′

2
d ′

1
d0

⋅ ⋅ ⋅ Ld ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

15

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

To find an expression for , look at the rows where .

==000 && L==1
==001 && L==1
==010 && L==1
==011 && L==1

Split up the bits of the day to get a formula for each row.

==0 && ==0 && ==0 && L==1
==0 && ==0 && ==1 && L==1
==0 && ==1 && ==0 && L==1
==0 && ==1 && ==1 && L==1

Translate to Boolean algebra to get an expression for .

cc11

d2d1d0 L c1c0 c1 = 1c1

d2d1d0

d2d1d0

d2d1d0

d2d1d0

d2 d1 d0

d2 d1 d0

d2 d1 d0

d2 d1 d0

c1

⋅ ⋅ ⋅ Ld ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ Ld ′

2
d ′

1
d0

⋅ ⋅ ⋅ Ld ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

15

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

Now we repeat this process to get .

cc00

d2d1d0 L c1c0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c0

=c0

16

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

Now we repeat this process to get .

cc00

d2d1d0 L c1c0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c0

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

16

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

Now we repeat this process to get .

cc00

d2d1d0 L c1c0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c0

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

16

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

Now we repeat this process to get .

cc00

d2d1d0 L c1c0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c0

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ +d ′

2
d1 d ′

0
L′

16

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

Now we repeat this process to get .

cc00

d2d1d0 L c1c0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c0

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ +d ′

2
d1 d ′

0
L′

⋅ ⋅ ⋅ +d ′

2
d1 d0 L′

16

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

Now we repeat this process to get .

cc00

d2d1d0 L c1c0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c0

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ +d ′

2
d1 d ′

0
L′

⋅ ⋅ ⋅ +d ′

2
d1 d0 L′

⋅ ⋅ ⋅ +d2 d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d2 d ′

1
d ′

0

16

From code to From code to combinational logiccombinational logic via a truth table: via a truth table:

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

Now we repeat this process to get .

cc00

d2d1d0 L c1c0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c0

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ +d ′

2
d1 d ′

0
L′

⋅ ⋅ ⋅ +d ′

2
d1 d0 L′

⋅ ⋅ ⋅ +d2 d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d2 d ′

1
d ′

0

⋅ ⋅ ⋅ Ld2 d ′

1
d0

16

From combinational logic to From combinational logic to circuitscircuits

Here is as a circuit …

d 2

d 1

L

d 0 c1

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ +d ′

2
d1 d ′

0
L′

⋅ ⋅ ⋅ +d ′

2
d1 d0 L′

⋅ ⋅ ⋅ +d2 d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d2 d ′

1
d ′

0

⋅ ⋅ ⋅ Ld2 d ′

1
d0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

c1

17

What can we do with the logic encoding?What can we do with the logic encoding?

Create hardware implementations!

And perform program verification …

Example: verify that classesLeft
returns 3 only if lecture is true.

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ +d ′

2
d1 d ′

0
L′

⋅ ⋅ ⋅ +d ′

2
d1 d0 L′

⋅ ⋅ ⋅ +d2 d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d2 d ′

1
d ′

0

⋅ ⋅ ⋅ Ld2 d ′

1
d0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

d2d1d0 L c1c0

18

What can we do with the logic encoding?What can we do with the logic encoding?

Create hardware implementations!

And perform program verification …

Example: verify that classesLeft
returns 3 only if lecture is true.

, , and represent propositions
, , and .

Check that

Day
SUN 000 0 01
SUN 000 1 11
MON 001 0 01
MON 001 1 11
TUE 010 0 01
TUE 010 1 10
WED 011 0 01
WED 011 1 10
THU 100 0 01
THU 100 1 01
FRI 101 0 00
FRI 101 1 01
SAT 110 0 00
SAT 110 1 00

- 111 0 00
- 111 1 00

p q r

= 1c1 = 1c0 L = 1

p ∧ q → r ≡ T

=c0 ⋅ ⋅ ⋅ +d ′

2
d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ +d ′

2
d ′

1
d0 L′

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ +d ′

2
d1 d ′

0
L′

⋅ ⋅ ⋅ +d ′

2
d1 d0 L′

⋅ ⋅ ⋅ +d2 d ′

1
d ′

0
L′

⋅ ⋅ ⋅ L +d2 d ′

1
d ′

0

⋅ ⋅ ⋅ Ld2 d ′

1
d0

=c1 ⋅ ⋅ ⋅ L +d ′

2
d ′

1
d ′

0

⋅ ⋅ ⋅ L +d ′

2
d ′

1
d0

⋅ ⋅ ⋅ L +d ′

2
d1 d ′

0

⋅ ⋅ ⋅ Ld ′

2
d1 d0

d2d1d0 L c1c0

18

Simplification and proofsSimplification and proofs
Optimizing circuits and proving theorems.

19

So far, we’ve used the basics of Boolean algebra …So far, we’ve used the basics of Boolean algebra …
Boolean algebra consists of the following elements and operations:

a set of elements ,
binary operations ,
a unary operation .

Boolean operations satisfy the following axioms for any :

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

B = {0, 1}

{+, ⋅}

{ }′

These correspond to the truth
values , and the logical
connectives .

{𝖥, 𝖳}

∨, ∧, ¬

a, b, c ∈ B

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

20

We can use the basics to prove some useful theoremsWe can use the basics to prove some useful theorems

Uniting

Absorption

Factoring

Consensus

DeMorgan’s

a ⋅ b + a ⋅ = ab′

(a + b) ⋅ (a +) = ab′

a + a ⋅ b = a

a ⋅ (a + b) = a

(a +) ⋅ b = a ⋅ bb′

(a ⋅) + b = a + bb′

(a + b) ⋅ (+ c) = a ⋅ c + ⋅ ba′ a′

a ⋅ b + ⋅ c = (a + c) ⋅ (+ b)a′ a′

(a ⋅ b) + (b ⋅ c) + (⋅ c) = a ⋅ b + ⋅ ca′ a′

(a + b) ⋅ (b + c) ⋅ (+ c) = (a + b) ⋅ (+ c)a′ a′

(a + b + … = ⋅ ⋅ …)′ a′ b′

(a ⋅ b ⋅ … = + + …)′ a′ b′

21

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting

Absorption

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ =

=

= X

X + X ⋅ Y =

=

=

=

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity

Absorption

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

=

= X

X + X ⋅ Y =

=

=

=

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity
Complementarity

Absorption

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

= X ⋅ 1

= X

X + X ⋅ Y =

=

=

=

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity
Complementarity
Identity

Absorption

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

= X ⋅ 1

= X

X + X ⋅ Y =

=

=

=

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity
Complementarity
Identity

Absorption Identity

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

= X ⋅ 1

= X

X + X ⋅ Y = X ⋅ 1 + X ⋅ Y

=

=

=

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity
Complementarity
Identity

Absorption Identity
Distributivity

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

= X ⋅ 1

= X

X + X ⋅ Y = X ⋅ 1 + X ⋅ Y

= X ⋅ (1 + Y)

=

=

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity
Complementarity
Identity

Absorption Identity
Distributivity
Commutativity

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

= X ⋅ 1

= X

X + X ⋅ Y = X ⋅ 1 + X ⋅ Y

= X ⋅ (1 + Y)

= X ⋅ (Y + 1)

=

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity
Complementarity
Identity

Absorption Identity
Distributivity
Commutativity
Null

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

= X ⋅ 1

= X

X + X ⋅ Y = X ⋅ 1 + X ⋅ Y

= X ⋅ (1 + Y)

= X ⋅ (Y + 1)

= X ⋅ 1

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using the axiomsExample: proving theorems using the axioms

Uniting Distributivity
Complementarity
Identity

Absorption Identity
Distributivity
Commutativity
Null
Identity

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

X ⋅ Y + X ⋅ Y ′ = X ⋅ (Y +)Y ′

= X ⋅ 1

= X

X + X ⋅ Y = X ⋅ 1 + X ⋅ Y

= X ⋅ (1 + Y)

= X ⋅ (Y + 1)

= X ⋅ 1

= X

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

22

Example: proving theorems using truth tablesExample: proving theorems using truth tables

DeMorgan’s law

NOR is equivalent to AND with inputs
complemented

0 0 1 1 1 1
0 1 1 0 0 0
1 0 0 1 0 0
1 1 0 0 0 0

DeMorgan’s law

NAND is equivalent to OR with inputs
complemented

0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 0 0

(X + Y = ⋅)′ X ′ Y ′

X Y X ′ Y ′ (X + Y)′
⋅X ′ Y ′

(X ⋅ Y = +)′ X ′ Y ′

X Y X ′ Y ′ (X ⋅ Y)′ +X ′ Y ′

23

Example: simplifying (circuits) using Boolean algebraExample: simplifying (circuits) using Boolean algebra
(from classesLe�)
(HW2)
(HW2)

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

c1 = ⋅ ⋅ ⋅ L + ⋅ ⋅ ⋅ L + ⋅ ⋅ ⋅ L + ⋅ ⋅ ⋅ Ld ′

2
d ′

1
d ′

0
d ′

2
d ′

1
d0 d ′

2
d1 d ′

0
d ′

2
d1 d0

= …

= ⋅ Ld ′

2

a + b ∈ B

a ⋅ b ∈ B

a + b = b + a

a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a

a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1

a ⋅ 0 = 0

a + a = a

a ⋅ a = a

(= aa′)′

24

Example: simplifying (circuits) using Boolean algebraExample: simplifying (circuits) using Boolean algebra
(from classesLe�)
(HW2)
(HW2)

Here is the simplified circuit …

d 2
L

c1

c1 = ⋅ ⋅ ⋅ L + ⋅ ⋅ ⋅ L + ⋅ ⋅ ⋅ L + ⋅ ⋅ ⋅ Ld ′

2
d ′

1
d ′

0
d ′

2
d ′

1
d0 d ′

2
d1 d ′

0
d ′

2
d1 d0

= …

= ⋅ Ld ′

2

c1

25

SummarySummary
Boolean algebra is a notation for combinational circuits.

It consists of elements and operations .
The operations satisfy the axioms of Boolean algebra.

We can translate specs to code to logic and to circuits for
faster implementation in hardware, and
program verification.

We can use axioms of Boolean algebra and truth tables to
prove useful theorems, and
simplify and optimize combinational circuits.

{0, 1} {+, ⋅, }′

26

