
CSE 311: Foundations of Computing I Spring 2020

Homework 8 (due May 27 2020)
Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough to convince someone who does not already know the answer. You may use results from lecture and pre-
vious homeworks without proof. See the syllabus for more details and for permitted resources and collaboration.

1. Better Folded Than Reversed (20 points)

Consider the set of all linked lists over integers defined as follows:

Basis Step: null ∈ List.
Recursive Step: For any x ∈ Z, if L ∈ List, then Node(x, L) ∈ List.

For example, Node(3, Node(1, Node(1, null))) ∈ List represents the list [3, 1, 1].
Linked lists are a core data structure in functional programming languages, which also provide common
functions for operating on lists, including foldf , shift, and reverse defined as follows:

foldf (y, null) = y for any y ∈ Z
foldf (y, Node(x, L)) = f(x, foldf (y, L)) for any L ∈ List, x, y ∈ Z

shift(null, R) = R for any R ∈ List
shift(Node(x, L), R) = shift(L, Node(x, R)) for any L, R ∈ List, x ∈ Z

reverse(L) = shift(L, null) for any L ∈ List

The function shift prepends all elements in L to R, in the reverse order, and the function reverse uses shift to
implement list reversal. For example:

reverse(Node(3, Node(1, Node(1, null)))) = shift(Node(3, Node(1, Node(1, null))), null)
= shift(Node(1, Node(1, null)), Node(3, null))
= shift(Node(1, null), Node(1, Node(3, null)))
= shift(null, Node(1, Node(1, Node(3, null))))
= Node(1, Node(1, Node(3, null))).

As before, we would like to optimize our use of the list API to avoid creating intermediate lists. In particular,
we want to replace foldf (y, reverse(L)) with foldf (y, L), whenever the results of these two expressions are
guaranteed to be the same.
This problem asks you to show that (a) this optimization is incorrect for some functions f . Next, it asks
you to (b) prove a lemma, which will then help you show that (c) the optimization is correct for every
binary function f that satisfies two additional properties, commutativity and associativity. Recall that a
binary function f is associative iff f(a, f(b, c)) = f(f(a, b), c) for all a, b, c ∈ Z, and f is commutative iff
f(a, b) = f(b, a) for all a, b ∈ Z. For example, f(a, b) = a + b is both commutative and associative, so you
can apply the theorem you will prove in part (c) to replace foldf (y, reverse(L)) with just foldf (y, L).
(a) [2 points] Prove that foldf (y, reverse(L)) 6= foldf (y, L) for some L ∈ List, y ∈ Z, and binary function f

over integers.
(b) [9 points] Prove that for all L ∈ List, all a, b ∈ Z, and all binary functions f over integers, if f is

associative and commutative, then foldf (f(a, b), L) = f(a, foldf (b, L)).
(c) [9 points] Prove that for all L ∈ List, all y ∈ Z, and all binary functions f over integers, if f is associative

and commutative, then foldf (y, reverse(L)) = foldf (y, L).
Hint: You will need a stricter induction hypothesis. To obtain the stricter hypothesis, observe that
foldf (y, reverse(L)) = foldf (y, shift(L, null)) and foldf (y, L) = foldf (foldf (y, null), L), so the problem is

Page 1 of 4

https://courses.cs.washington.edu/courses/cse311/20sp/syllabus.html


CSE 311: Homework 8 (due May 27 2020) Spring 2020

asking you to prove that foldf (y, shift(L, null)) = foldf (foldf (y, null), L) if f is associative and com-
mutative. Generalize this statement to consider all lists R instead of just null, and argue that this
generalization is a stricter hypothesis for a proof by structural induction. The result from part (b) can
help you justify a step in your proof of the stricter hypothesis.

2. Functional Relationships (15 points)

A relation R ⊆ A×B is functional if and only if it satisfies the following property:

∀(a, b1) ∈ A×B.∀(a, b2) ∈ A×B.((a, b1) ∈ R ∧ (a, b2) ∈ R)→ b1 = b2

A function f : A → B takes inputs from the set A and outputs an element in B, meaning for a ∈ A,
f(a) = b ∈ B. From a function f we can define the functional relation Rf = {(a, f(a)) : a ∈ A}.
For each of the following questions about functional relations, answer the question (yes or no), and prove
that your answer is correct. All of your proofs for this question should be short (one paragraph).
(a) [5 points] Does there exist a functional relation R ⊆ A×A such that R is transitive and R contains the

tuples (a, b) ∈ R and (b, c) ∈ R for distinct a, b, c ∈ A?
(b) [5 points] We say that a functional relation is one-to-one if ∀(a1, f(a1)) ∈ Rf . ∀(a2, f(a2) ∈ Rf .

f(a1) = f(a2) → a1 = a2. Does there exist a function f over integers, f : Z → Z, that defines an
antisymmetric and one-to-one functional relation Rf?

(c) [5 points] Does there exist a function f over integers, f : Z→ Z, that defines a functional relation Rf

such that R2
f = R1

f and R1
f ∩R0

f = ∅? (Recall that R0 for every relation R on integers is {(a, a) : a ∈ Z}.)

3. Scheduling with Precedence Constraints (20 points)

Suppose there is a set of jobs J , and each job takes some amount of time to process, denoted pj (processing
time) for j ∈ J . Given a set of machines that can process all the jobs, the goal is to create a schedule for
assigning jobs to machines in order to complete the jobs as quickly as possible. A job cannot be moved from a
machine once it is scheduled on a machine (this is called non-migratory), meaning a job cannot be processed
partially on machine 1 and then moved to machine 2.
For instance, if we want to process jobs J = {j1, j2, j3} on 2 machines with pj1 = 1, pj2 = 2, and pj3 = 1,
then we can schedule j1 then j3 on machine 1 and j2 on machine 2 to complete all the jobs in total time 2.
Sometimes certain jobs in J cannot be scheduled until other jobs have been completed. For example, this is
extremely common in the parallelization of Deep Neural Network training. We say that there is a precedence
constraint from j1 to j2, denoted j1 ≺ j2, if no machine can start processing j2 until j1 is completely
processed. We call j1 a predecessor of j2 and j2 a successor of j1. We model the set of jobs and its
precedence constraints as a binary relation.
For instance, if we want to process jobs J = {j1, j2, j3} on 2 machines with pj1 = 1, pj2 = 2, and pj3 = 1,
and further j2 ≺ j3, then if we still scheduled j1 then j3 on machine 1 and j2 on machine 2, the completion
time is 2 + 1 = 3 because j3 must wait until j2 finished.

Let J = {j1, j2, j3, j4, j5, j6, j7, j8, j9} be a set of 9 jobs. We will refer to jobs by their index 1, · · · , 9. In this
problem you will consider the following specification for precedence constraints on J . There are no other
precedence constraints other than the ones listed below:

• Every job with even index has j1 as a predecessor.
• Every job with index congruent to 2 mod 5 is a successor of j3.
• The only predecessor of j5 is the job whose index is the multiplicative inverse of 5 mod 9.
• j3 and j7 are predecessors of j8.

Page 2 of 4



CSE 311: Homework 8 (due May 27 2020) Spring 2020

• j9 is the only successor of j5.
(a) [10 points] Write down the relation R where (ji, jk) ∈ R if and only if ji ≺ jk.
(b) [5 points] Assume we can process J on 3 machines and all jobs have processing time pj = 1. Give a

schedule for the jobs that finishes as fast as possible (i.e., takes the least total time). You do not need to
prove anything here. Hint: Write out the directed graph for the relation R. This will make it easier to
see the answer.

(c) [5 points] Prove that your schedule in (b) is as fast as possible. Hint: Write out the elements of R2, R3,
and Rk for k ≥ 4. Then, use the elements of R3 and Rk for k ≥ 4 in your proof.

4. Designing DFAs [Online] (15 points)

For each of the following, create a DFA that recognizes exactly the language given.
(a) [5 points] Binary strings with at least two 1s.
(b) [5 points] Binary strings that have at least one 1 and an even number of 0s.
(c) [5 points] Binary strings such that none of their runs of 1s have odd length. A run of 1s is a substring

consisting of all 1s (i.e. “11 · · · 1”) that is either at the beginning of the string, or at the end of the string,
or in the middle of the string, surrounded by 0s. For example, the following strings are included in the
language: “11”, “110”, “00001111”, and “011001111011”. But the following strings are not included in the
language because they all contain at least one run of 1s with odd length: “111”, “010”, and “00110111”.

Submit and check your answers here:

https://grinch.cs.washington.edu/cse311/fsm

You must also submit screenshots of your answers in Gradescope, and
mark them as the solution to this problem. You have only 5 chances to
submit a correct answer.

5. Designing NFAs [Online] (15 points)

For each of the following, create an NFA that recognizes exactly the language given.
(a) [7 points] The set of binary strings that contain 11 and do not contain 00.
(b) [8 points] The set of binary strings that contain 11 or do not contain 00.

Submit and check your answers here:

https://grinch.cs.washington.edu/cse311/fsm

You must also submit screenshots of your answers in Gradescope, and
mark them as the solution to this problem. You have only 5 chances to
submit a correct answer.

6. DFA Minimization [Online] (15 points)

Consider the following automaton:

Page 3 of 4

https://grinch.cs.washington.edu/cse311/fsm
https://grinch.cs.washington.edu/cse311/fsm


CSE 311: Homework 8 (due May 27 2020) Spring 2020

q0
[1]

q4
[0]

q3
[0]

q1
[1]

q6
[1]

q5
[1]

q2
[1]

1

0

1

0 1

0

1

0

1

0

1

0

1

0

(a) [5 points] Use the algorithm for minimization that we discussed in class to minimize the above automaton.
For each step of the algorithm, write down the groups (of states), which group was split in the step, and
the reason for splitting that group. See the solution to Problem 6 of Section 8 for an example of how to
write down the steps and the explanations.

(b) [10 points]
Submit and check your minimized DFA here:

https://grinch.cs.washington.edu/cse311/fsm
You must also submit a screenshot of your DFA in Gradescope, and mark
it as the solution to this problem. You have only 5 chances to submit a
correct answer.

Page 4 of 4

https://grinch.cs.washington.edu/cse311/fsm

