
CSE 311: Foundations of Computing I Spring 2020

Homework 7 (due May 20 2020)
Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough to convince someone who does not already know the answer. You may use results from lecture and pre-
vious homeworks without proof. See the syllabus for more details and for permitted resources and collaboration.

1. All the Recursive Strings (15 points)

For each of the following, write a recursive definition of the set of strings satisfying the given properties. Your
basis step must explicitly enumerate a finite number of initial elements. Use the smallest basis set and the
smallest number of recursive rules possible. Briefly justify that your solution is correct; no proof is required.
You do not have to justify why your answer is the smallest in either way.
(a) [5 points] Binary strings that start with 0 and have odd length.
(b) [5 points] Binary strings with an even number of 1s.
(c) [5 points] Binary strings x ∈ {0, 1}∗ whose length len(x) satisfies len(x) ≡ 2 (mod 3).

2. An Uphill Manhattan Walk (12 points)

Let S be a subset of Z× Z = Z2 defined as:

Basis Step: (0, 0) ∈ S

Recursive Step: If (a, b) ∈ S then (a, b + 1) ∈ S, (a + 1, b + 1) ∈ S, and (a + 2, b + 1) ∈ S.

Prove that ∀(a, b) ∈ S, a ≤ 2b.

3. Expressive Trees (25 points)

Let x be a variable and define the set Expr as follows:

Basis Step: Var(x) ∈ Expr, Int(4) ∈ Expr, and Int(9) ∈ Expr.
Recursive Step: For any s, t ∈ Expr, we have Add(s, t) ∈ Expr and Sub(s, t) ∈ Expr.

The set Expr represents parse trees of arithmetic expressions over the variable x and integers 4 and 9 that
use only addition and subtraction. For example, Add(Var(x), Int(4)) represents the expression x + 4.
We also define the function Evalv that takes a parse tree (an element of Expr) and returns the value of the
expression that the tree represents when x has the value v ∈ Z:

Evalv(Int(w)) = w for any w ∈ {4, 9}
Evalv(Var(x)) = v

Evalv(Add(s, t)) = Evalv(s) + Evalv(t) for any s, t ∈ Expr
Evalv(Sub(s, t)) = Evalv(s)− Evalv(t) for any s, t ∈ Expr

For example, Eval307(Add(Var(x), Int(4)) = Eval307(Var(x)) + Eval307(Int(4)) = 307 + 4 = 311.
This problem asks you to prove two properties of parse trees, (a) and (c), and based on those proofs, state a
theorem about them (d). Part (b) asks you to prove a lemma that will help you complete the proof in part (c).
(a) [8 points] Prove that for any e ∈ Expr, there are integers A and B such that for any integer v,

Evalv(e) = A · v + B.
(b) [8 points] Consider the recursive function Mul that constructs a parse tree given an integer n > 0 and

a parse tree e ∈ Expr:

Mul(1, e) = e for any e ∈ Expr
Mul(n, e) = Add(e, Mul(n− 1, e)) for any n ≥ 2, e ∈ Expr

Prove that Evalv(Mul(n, e)) = n · Evalv(e) for every parse tree e ∈ Expr, integer n > 0, and integer v.

Page 1 of 3

https://courses.cs.washington.edu/courses/cse311/20sp/syllabus.html


CSE 311: Homework 7 (due May 20 2020) Spring 2020

(c) [8 points] Prove that for any integers A and B, there is a parse tree e ∈ Expr such that for any integer
v, Evalv(e) = A · v + B. Hint: You may want to use the result from (b) for this proof.

(d) [1 point] What is the strongest theorem you can state about the relationship between the set of parse
trees Expr and arithmetic expressions of the form Ax + B, where A and B are integers?

4. Better Folded Than Appended (20 points)

Consider the set of all linked lists over integers defined as follows:

Basis Step: null ∈ List.
Recursive Step: For any x ∈ Z, if L ∈ List, then Node(x, L) ∈ List.

For example, Node(3, Node(1, Node(1, null))) ∈ List represents the list [3, 1, 1].
Linked lists are a core data structure in functional programming languages, which also provide common
functions for operating on lists, including append and foldf , defined as follows:

append(null, R) = R for any R ∈ List
append(Node(x, L), R) = Node(x, append(L, R)) for any L, R ∈ List, x ∈ Z

foldf (y, null) = y for any y ∈ Z
foldf (y, Node(x, L)) = f(x, foldf (y, L)) for any L ∈ List, x, y ∈ Z

Here, append concatenates two lists L and R to create a new list that has all the elements of L, followed
by all the elements of R. The expression foldf (y, L) computes the result of repeatedly applying a binary
function f(a, b), where a and b are integer arguments, to the elements of a list L and a value y. For example,
if L is the list containing the number x1, . . . , xn, then foldf (y, L) = f(x1, f(x2, f(. . . f(xn, y) . . .))).
When writing programs that use these operations, we want to avoid creating intermediate lists to get the best
performance. For example, instead of writing foldf (y, append(L, R)), we prefer to write foldf (foldf (y, R), L).
This problem asks you to prove that this optimization is correct but one that looks very similar is not!
(a) [2 points] Use the definitions to calculate append(L, R) where L = Node(7, Node(5, null)) and R =

Node(3, Node(1, Node(1, null))). Show your work.
(b) [2 points] Let f be the function defined by f(a, b) = a + b. Use the definitions to calculate foldf (0, L)

where L = Node(3, Node(1, Node(1, null))). Show your work.
(c) [11 points] Prove that foldf (y, append(L, R)) = foldf (foldf (y, R), L) for all L, R ∈ List, all y ∈ Z, and

all binary functions f over integers.
(d) [5 points] Prove that foldf (y, append(L, R)) 6= foldf (foldf (y, L), R) for some L, R ∈ List, y ∈ Z, and

binary function f over integers.

5. Constructing Regular Expressions [Online] (16 points)

For each of the following, construct regular expressions that match the given set of strings:
(a) [4 points] Binary strings where every occurrence of a 1 is immediately followed by a 0.
(b) [4 points] Binary strings where no occurrence of a 00 is immediately followed by a 1.
(c) [4 points] The set of all binary strings that contain at least one 1 and at most two 0’s.
(d) [4 points] The set of all binary strings that begin with a 1 and have length congruent to 2 mod 4

Submit and check your answers to this question here:
https://grinch.cs.washington.edu/cse311/regex

You must also submit a screenshot of your submitted regexes in Gradescope,
and mark it as the solution to this problem. Think carefully about your answer
to make sure it is correct before submitting. Do not include blanks since these
count as characters. You have only 5 chances to submit a correct answer.

Page 2 of 3

https://grinch.cs.washington.edu/cse311/regex


CSE 311: Homework 7 (due May 20 2020) Spring 2020

6. All the Grammatical Strings (12 points)

For each of the following, construct context-free grammars that generate the given set of strings. If your
grammar has more than one variable, we will ask you to write a sentence describing what sets of strings you
expect each variable in your grammar to generate.

For example, if your grammar were:

S→ E | O
E→ EE | CC
O→ EC
C→ 0 | 1

We would expect you to say “E generates (non-empty) even length binary strings; O generates odd length
binary strings; C generates binary strings of length one.”

(a) [4 points] The same set of strings as in 5c—the set of all binary strings that contain at least one 1 and
at most two 0’s.

(b) [4 points] {1m0n1m+n : m, n ≥ 0}
(c) [4 points] Binary strings with an odd number of 0s.

Page 3 of 3


