
CSE 311: Foundations of Computing I Spring 2020

Homework 9 (Final) (due June 5 2020)
Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough to convince someone who does not already know the answer. You may use results from lecture and pre-
vious homeworks without proof. See the syllabus for more details and for permitted resources and collaboration.

1. Formal Proofs and Truth Tables (10 points)

Prove the following using logical equivalences and a truth table. ¬(p→ (p ∧ ¬q)) ≡ p ∧ q.

2. Logical Surjections (15 points)

For each of the following statements about functions: (1) translate the statement to predicate logic, (2) say
whether the statement is true or false, and (3) prove that your answer is correct.
For the logic translations, let the domain of discourse be functions f : A→ B of one variable. Recall that a
function is a relation that maps each element in A to one element in B. You will be translating statements
about surjective functions. We say a function f : A→ B is surjective (onto) if and only if for every b ∈ B, there
is an a ∈ A such that f(a) = b. The set A is called the domain of f , and f(A) = {b ∈ B : ∃a ∈ A.f(a) = b}
is the range of f . Note that f(A) ⊆ B, and by definition, f is surjective onto its range.
Your translations should use only relational operators (e.g., composition ◦); the operator |A| to represent the
size, or cardinality, of a set A; the predicate Surj(f), which says whether a function f is surjective; and the
predicates =,≥,≤ in regards to set equality and set sizes.
(a) [5 points] Not every function f : A→ A whose domain and range are the same is surjective.
(b) [5 points] The composition of surjective functions f : B → C and g : A→ B is surjective.
(c) [5 points] The domain of a surjective function is no larger than its range.

3. Define the Relationship (15 points)

For m ∈ N \ {0}, define the relation Cm on Z by (a, b) ∈ Cm iff a ≡ b (mod m). State whether each of the
following are True or False, and prove your answer.
(a) [5 points] If (a, b) ∈ Cm then (−a, b) ∈ Cm.
(b) [5 points] C∗m = Cm. Recall C∗m is the reflexive transitive closure of Cm.
(c) [5 points] State whether or not Cm is reflexive, symmetric, antisymmetric, and transitive. Justify your

answer briefly. (You may use any of your previous parts.)

4. Many Trees (10 points)

Let S be the set of all rooted binary trees:

Basis Step: • ∈ S.
Recursive Step: If L, R ∈ S, then Tree(•, L, R) ∈ S.

Observe that the contents of the set S after n applications of the recursive rule can be represented as
Sn = Sn−1 ∪ {Tree(•, L, R) : L, R ∈ Sn−1}, where S0 = {•}.
Next, let T be the following recursively defined function:

T (0) = 1
T (n) = T (n− 1)2 + 1 for n ≥ 1

Prove that T (n) = |Sn| where |Sn| is the number of trees in the set Sn for all n ≥ 0.

Page 1 of 3

https://courses.cs.washington.edu/courses/cse311/20sp/syllabus.html

CSE 311: Homework 9 (Final) (due June 5 2020) Spring 2020

5. Logical Trees (15 points)

Let V = {. . . , a, b, c, . . .} be a fixed set of boolean variables. We then define the set Expr as follows:

Basis Step: For any v ∈ V, Var(v) ∈ Expr.
Recursive Step: If s, t ∈ Expr, then Not(s) ∈ Expr, And(s, t) ∈ Expr, and Or(s, t) ∈ Expr.

The set Expr represents parse trees of boolean algebra expressions that use only negation, conjunction, and
disjunction. For example, And(Var(a), Or(Not(Var(b)), Var(c))) represents the expression a · (b′ + c).
Next, we define the function EvalV that takes as input a parse tree from Expr, and returns the value of the
boolean algebra expression that the tree represents when all variables in the set V ⊆ V have the value 1,
and all variables not in V have the value 0.

EvalV (Var(v)) = if v ∈ V then 1 else 0 for any v ∈ V and V ⊆ V
EvalV (Not(s)) = EvalV (s)′ for any s ∈ Expr

EvalV (And(s, t)) = EvalV (s) · EvalV (t) for any s, t ∈ Expr
EvalV (Or(s, t)) = EvalV (s) + EvalV (t) for any s, t ∈ Expr

For example, Eval{a}(And(Var(a), Or(Not(Var(b)), Var(c)))) = 1 · (0′ + 0) = 1 · (1 + 0) = 1.
Finally, we define the functions f and g as follows:

f(Var(v), 0) = Not(Var(v)) for any v ∈ V
f(Var(v), 1) = Var(v) for any v ∈ V
f(Not(s), 0) = f(s, 1) for any s ∈ Expr
f(Not(s), 1) = f(s, 0) for any s ∈ Expr

f(And(s, t), 0) = Or(f(s, 0), f(t, 0)) for any s, t ∈ Expr
f(And(s, t), 1) = And(f(s, 1), f(t, 1)) for any s, t ∈ Expr

f(Or(s, t), 0) = And(f(s, 0), f(t, 0)) for any s, t ∈ Expr
f(Or(s, t), 1) = Or(f(s, 1), f(t, 1)) for any s, t ∈ Expr

g(s) = f(s, 1) for any s ∈ Expr

The function f takes as input a parse tree and a boolean value (0 or 1), and returns a parse tree.
The function g is defined in terms of f ; it takes a parse tree and returns a parse tree. For example,
g(Not(Not(Var(a)))) = Var(a). Understanding what these functions do is essential for solving this problem.
This problem asks you to prove two properties of the function g over parse trees, (b) and (c). Part (a) asks
you to prove a lemma that will help you complete the proof in part (b). You can use the result from part
(b) to prove part (c), but note that (c) is challenging. It is worth only 1 point, so do not attempt it unless
you have finished the rest of the assignment and want a challenge!
(a) [10 points] Prove that g(g(s)) = g(s) for every s ∈ Expr.

Hint: You will need a stricter induction hypothesis. Recall how we obtained such a hypothesis for the
Better Folded Than Reversed problem from HW8—expand the definition of g, generalize the resulting
statement, and argue that it implies the desired result.

(b) [4 points] Let F = {t ∈ Expr : g(t) = t}. Prove that for every s ∈ Expr, we have g(s) ∈ F .
(c) [1 point] Prove that for every s ∈ Expr, there is a t ∈ F such that EvalV (s) = EvalV (t) for every

V ∈ P(V).
(This problem is challenging; do not attempt it before finishing the rest of the assignment.)

6. Grammatical Trees (10 points)

Write a context-free grammar that generates exactly the set F from Problem 5b. In other words, your
grammar should generate the parse tree s if and only if s ∈ F .

Page 2 of 3

CSE 311: Homework 9 (Final) (due June 5 2020) Spring 2020

Briefly explain why your solution is correct. If your grammar has more than one variable, write a sentence
describing what sets of parse trees you expect each variable in your grammar to generate. No proof is needed.

7. Not So Nondeterministic [Online] (15 points)

Use the construction from lecture to convert the following NFA to a DFA. Label each state of the DFA using
appropriate states of the original NFA.

a b c

d e

0 0

ε

1

0

0
1

1

0

ε

Submit and check your answer here:

https://grinch.cs.washington.edu/cse311/fsm

You must also submit a screenshot of your answer in Gradescope, and
mark it as the solution to this problem. You have only 5 chances to submit
a correct answer.

8. Regular or Not, That is the Final Question (10 points)

Let 1∗ be the regular language of all strings consisting of only ones. Does there exist a set of strings L ⊆ 1∗
such that L is an irregular language? Prove that your answer is correct.

Page 3 of 3

https://grinch.cs.washington.edu/cse311/fsm

