Sets Reference Sheet

Common Sets

- \(\mathbb{N} = \{0, 1, 2, \ldots \} \) is the set of Natural Numbers.
- \(\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \) is the set of Integers.
- \(\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \land q \neq 0 \right\} \) is the set of Rational Numbers.
- \(\mathbb{R} \) is the set of Real Numbers.

Containment, Equality, and Subsets

Let \(A, B \) be sets. Then:

- \(x \in A \) ("\(x \) is an element of \(A \)) means that \(x \) is an element of \(A \).
- \(x \notin A \) ("\(x \) is not an element of \(A \)) means that \(x \) is not an element of \(A \).
- \(A \subseteq B \) ("\(A \) is a subset of \(B \)) means that all the elements of \(A \) are also in \(B \).
- \(A \nsubseteq B \) ("\(A \) is not a subset of \(B \)) means that some element of \(A \) is not also in \(B \).
- \(A \supseteq B \) ("\(A \) is a superset of \(B \)) means that all the elements of \(B \) are also in \(A \).
- \(A = B \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x \ (x \in A \leftrightarrow x \in B) \)

Set Operations

Let \(A, B \) be sets. Then:

- \(A \cup B \) is the union of \(A \) and \(B \). \(A \cup B = \{ x : x \in A \lor x \in B \} \).
- \(A \cap B \) is the intersection of \(A \) and \(B \). \(A \cap B = \{ x : x \in A \land x \in B \} \).
- \(A \setminus B \) is the difference of \(A \) and \(B \). \(A \setminus B = \{ x : x \in A \land x \notin B \} \).
- \(A \oplus B \) is the symmetric difference of \(A \) and \(B \). \(A \oplus B = \{ x : x \in A \oplus x \in B \} \).
- \(\overline{A} \) is the complement of \(A \). If we restrict ourselves to a “universal set”, \(\mathcal{U} \), (a set of all possible things we're discussing), then \(\overline{A} = \{ x \in \mathcal{U} : x \notin A \} \).

Set Constructions

Let \(A, B, C, D \) be sets. Then:

- \(S = \{ x : P(x) \} \) is set builder notation which means \(S \) is the set that contains all objects \(x \) with property \(P \) (and no other elements).
- \(A \times B \) is the cartesian product of \(A \) and \(B \). \(A \times B = \{ (a, b) : a \in A, \ b \in B \} \).
- \([n] \) ("brackets \(n \)) is the set of integers from 1 to \(n \). \([n] = \{ x \in \mathbb{Z} : 1 \leq x \leq n \} \).
- \(\mathcal{P}(A) \) is the power set of \(A \). \(\mathcal{P}(A) = \{ S : S \subseteq A \} \). \(\mathcal{P}(A) \) is the set of all subsets of \(A \).