
Midterm Misconceptions



Induction Problem

𝑃 𝑛 : “Every properly ordered line with 𝑛 pairs has two consecutive 
people wearing gold hats.”

We need to show a ∀ statement in the inductive step.

To prove a for all statement, the first thing we do in our proof is…

Introduce an arbitrary variable!



Induction Problem

So if you didn’t start with “let L be an arbitrary properly ordered line 
with 𝑘 + 1 pairs of people” you didn’t start in the right place.

If you started with “an arbitrary properly ordered line with 𝑘 pairs”

There’s not formally a way to argue that “by listing out all the possible 
alterations I could think of, I’ll end up with all the possible lines of length 
𝑘 + 1” 
You might have (you probably did) but it’s still not a rigorous argument of a forall
statement if you don’t start with an arbitrary line of length 𝑘 + 1.



Induction Problem

This kind of attempted induction argument (where you “build up” to a 
supposedly arbitrary element from an arbitrary smaller element) easily 
hides bugs. For that reason it’s not logically valid.
See: HW6 P6.

Never ever ever try to prove a “for all” induction by building up (ever).

Always start with the arbitrary big thing (the 𝑘 + 1 thing) and find the smaller thing 
inside.

There is no rule of inference that says “I started with an arbitrary thing and did 
some alterations and it’s now an arbitrary other thing”



Induction Problem

But wait…don’t we just do that when we prove inequalities by induction?

Nope! 

1. Inequalities aren’t for-all statements (or if they are you introduce the 
variable at the start, like we did for that string induction proof)

2. We prove inequalities the normal way we prove inequalities (either 
starting from a fact you know and deriving the desired inequality, or 
starting from the left hand side and altering it until you get the right 
hand side).



Induction Problem

But wait, don’t we “build up” when we do structural induction?

Nope!

The recursive definition in structural induction guarantees us what the 
arbitrary element looks like…it’s made up of two ‘smaller’ elements in 
the set.

…and the template just lets us skip the words “let T be arbitrary, by the 
recursive definition, T is of the form…”



Induction Problem

But wait, that stamp collecting problem. We definitely started with the 
small one there.

The stamp collecting induction was an exists statement (there is a way 
to build 𝑘 + 1). So yeah, we definitely didn’t have anything arbitrary 
there. 

Nor would we expect to – it was an exists statement!



Set Problems

Notes from the TAs

Be careful with set-builder notation

Using variables you’ve defined in spots where dummy variables are 
expected:

1. Does not mean what you think it means.

2. “Hurts [your TA’s] brain” 



Dummy Variables

A lot like a local variable in Java.

It means something only inside its method.

∫ 5𝑥2𝑑𝑥 𝑥 is a dummy variable. It means something inside the integral, 
(so you can write 𝑑𝑥) but wouldn’t necessarily mean anything outside.

∃𝑥(𝑃 𝑥 ∧ 𝑄 𝑥 ) 𝑥 is a dummy variable.

{𝑦 ∶ 𝑦2 ≥ 5} 𝑦 is a dummy variable



Dummy Variables

So if you said something like
Let 𝑦 be an arbitrary element of output,

Consider {𝑦: 𝑦 = 𝑥} this 𝑦 is not that 𝑦



Set Proofs

If you’re showing 𝐴 ⊆ 𝐵

Your first step should always be

Let 𝑥 be an arbitrary element of 𝐴.

A lot of you had attempted proofs where you tried to write 
𝑜𝑢𝑡𝑝𝑢𝑡(𝑓, 𝐴 ∩ 𝐵) = 𝑦: ∃𝑥 𝑓 𝑥 = 𝑦 and modify the inside

𝑦 ∶ ∃𝑥 …

Don’t do this. It’s never how you do a set proof.



Set problems

This was a hard problem.

It’s what we call a “synthesis” problem – applying familiar ideas and 
techniques in new combinations.

You should expect these types of problems in all of your future courses 
if you haven’t seen them already; the end goal of university education is 
synthesis. 

You needed to combine set proofs, set builder notation, quantifier 
notation (both exists and for-all) to do this problem.



When a problem is hard, it’s easy to get overwhelmed.

Take a deep breath, and do the 4-step process.

1. What do the words in the statement mean?

2. What does the statement as a whole mean?

3. Where do I start?

4. Where is my target?



Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.



Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.

Let 𝑦 be an arbitrary element of output(𝑓, 𝐴 ∩ 𝐵)

So 𝑦 ∈output(𝑓, 𝐴) ∩output(𝑓, 𝐵)



Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.

Let 𝑦 be an arbitrary element of output(𝑓, 𝐴 ∩ 𝐵)

By definition of output, there is an 𝑥 such that 𝑥 ∈ 𝐴 ∩ 𝐵 and 𝑓 𝑥 = 𝑦

𝑦 ∈output(𝑓, 𝐴) and 𝑦 ∈output(𝑓, 𝐵)

So 𝑦 ∈output(𝑓, 𝐴) ∩output(𝑓, 𝐵)



Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.

Let 𝑦 be an arbitrary element of output(𝑓, 𝐴 ∩ 𝐵)

By definition of output, there is an 𝑥 such that 𝑥 ∈ 𝐴 ∩ 𝐵 and 𝑓 𝑥 = 𝑦

Since 𝑥 ∈ 𝐴 ∩ 𝐵 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵.

So by definition of output, 𝑓 𝑥 = 𝑦 ∈output(𝑓, 𝐴) and 𝑓 𝑥 = 𝑦 ∈output(𝑓, 𝐵)

𝑦 ∈output(𝑓, 𝐴) and 𝑦 ∈output(𝑓, 𝐵)

So 𝑦 ∈output(𝑓, 𝐴) ∩output(𝑓, 𝐵)







Translation

Here’s a process:

1. Read through in order, looking for any quantifiers.

2. Write the “core” assertion

3. Add in any domain restriction.




