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Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that 
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division 
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)



Modular arithmetic so far

For all integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 where 𝑛 > 0:

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎 + 𝑐 ≡ 𝑎 + 𝑐(𝑚𝑜𝑑 𝑛).

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛).

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

𝑎%𝑛 = 𝑎 − 𝑛 %𝑛.



% and Mod

Other resources use 𝑚𝑜𝑑 to mean an operation (takes in an integer, 
outputs an integer). We will not in this course. 𝑚𝑜𝑑 only describes ≡. It’s 
not “just on the right hand side” 

Define 𝑎%𝑏 to be “the 𝑟 you get from the division theorem”
i.e. the integer 𝑟 such that 0 ≤ 𝑟 < 𝑑 and 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞.

This is the “mod function”

I claim 𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

How do we show and if-and-only-if?



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑛|𝑏 − 𝑎 so 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. (by definitions of mod and 
divides).

So 𝑎 = 𝑏 − 𝑛𝑘

Taking each side %𝑛 we get:

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

Where the last equality follows from 𝑘 being an integer and doing 𝑘
applications of the identity we proved in the warm-up.



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Show the forward direction:

If 𝑎%𝑛 = 𝑏%𝑛 then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

This proof is a bit different than the other direction.

Remember to work from top and bottom!!

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic
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𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Forward direction:

Suppose 𝑎%𝑛 = 𝑏%𝑛.

By definition of %,𝑎 = 𝑘𝑛 + (𝑎%𝑛) and 𝑏 = 𝑗𝑛 + 𝑏%𝑛 for integers 𝑘, 𝑗

Isolating 𝑎%𝑛 we have 𝑎%𝑛 = 𝑎 − 𝑘𝑛. Since 𝑎%𝑛 = 𝑏%𝑛, we can plug 
into the second equation to get: 𝑏 = 𝑗𝑛 + (𝑎 − 𝑘𝑛)

Rearranging, we have 𝑏 − 𝑎 = 𝑗 − 𝑘 𝑛. Since 𝑘, 𝑗 are integers we have 
𝑛|(𝑏 − 𝑎).

By definition of mod we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).



More proofs

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Step 1: What do the words mean? 

Step 2: What does the statement as a whole say?

Step 3: Where do we start?

Step 4: What’s our target?

Step 5: Now prove it.



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛? ?= 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

…

𝑛? ?= 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

And then a miracle occurs

𝑛? ?= 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Uh-Oh

We hit a dead end. 

But how did I know we hit a dead end? Because I knew exactly where 
we needed to go. If you didn’t, you’d have been staring at that for ages 
trying to figure out the magic step.

(or worse, assumed you lost a minus sign somewhere, and just “fixed” 
it….)

Let’s try again. This time, let’s separate 𝑏 from 𝑎 and 𝑑 from 𝑐 before 
combining.



Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐

𝑛? ?= 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐 ,  

𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

𝑛? ?= 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

Isolating,𝑏 and 𝑑, we have: 𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐

Muliplying the equations, and factoring, 𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

Rearranging, and facoring out n: 𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

Since all of 𝑛, 𝑗, 𝑘, 𝑎, and 𝑐 are integers, we have that 𝑏𝑑 − 𝑎𝑐 is 𝑛 times an integer, so 

𝑛|(𝑏𝑑 − 𝑎𝑐), and by definition of mod

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Logical Ordering

When doing a proof, we often work from both sides…

But we have to be careful!

When you read from top to bottom, every step has to follow only from 
what’s before it, not after it.

Suppose our target is 𝑞 and I know 𝑞 → 𝑝 and 𝑟 → 𝑞.

What can I put as a “new target?”



Logical Ordering

So why have all our prior steps been ok backward?

They’ve all been either:

A definition (which is always an “if and only if”)

An algebra step that is an “if and only if”

Even if your steps are “if and only if” you still have to put everything in 
order – start from your assumptions, and only assert something once it 
can be shown. 



A bad proof

Claim: if x is positive then 𝑥 + 5 = −𝑥 − 5.

𝑥 + 5 = −𝑥 − 5

𝑥 + 5 = −𝑥 − 5

|𝑥 + 5| = | − (𝑥 + 5)|

𝑥 + 5 = |𝑥 + 5|

0 = 0

This claim is false – if you’re trying to do algebra, you need to start with 
an equation you know (say 𝑥 = 𝑥 or 2 = 2 or 0 = 0) and expand to the 
equation you want.



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

There has to be a better way! 

If only there were some equivalent implication…

One where we could negate everything…

Take the contrapositive of the statement:

For all integers, 𝑎, 𝑏, 𝑐: Show if 𝑎|𝑏 and 𝑎|𝑐 then 𝑎|(𝑏𝑐).



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

Therefore 𝑎|𝑏𝑐



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

By definition of divides, 𝑎𝑥 = 𝑏 and 𝑎𝑦 = 𝑐 for integers 𝑥 and 𝑦.

Multiplying the two equations, we get 𝑎𝑥𝑎𝑦 = 𝑏𝑐

Since 𝑎, 𝑥, 𝑦 are all integers, 𝑥𝑎𝑦 is an integer. Applying the definition of 
divides, we have 𝑎|𝑏𝑐.



Facts about modular arithmetic

For all integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 where 𝑛 > 0:

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑 𝑚𝑜𝑑 𝑛 then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛).

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

𝑎%𝑛 = 𝑎 − 𝑛 %𝑛.

We didn’t prove the first, it’s a good exercise! You can use it as a fact as 
though we had proven it in class.



Divisors and Primes



Primes and FTA

An integer 𝑝 > 1 is prime iff its only positive divisors are 𝟏
and 𝒑. Otherwise it is “composite”

Prime

Every positive integer greater than 1 has a unique 

prime factorization.

Fundamental Theorem of Arithmetic



GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the 

largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the 

smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple



public int Mystery(int m, int n){

if(m<n){

int temp = m;

m=n;

n=temp;

}

while(n != 0) {

int rem = m % n;

m=n;

n=temp;

}

return m;

} 



Try a few values…

gcd(100,125)

gcd(17,49)

gcd(17,34)

gcd(13,0)

lcm(7,11)

lcm(6,10)



How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 ⋅ 3, 22 ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.

(lcm has a similar algorithm – take the maximum number of copies of 
everything)

But that’s….really expensive. Mystery from a few slides ago find gcd.



GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?

Call 𝑎 = gcd 𝑤, 𝑥 , 𝑏 = gcd(𝑦, 𝑧)

If 𝑏|𝑤 and 𝑏|𝑥 then 𝑏 is a common divisor of 𝑤, 𝑥 so 𝑏 ≤ 𝑎

If 𝑎|𝑦 and 𝑎|𝑧 then 𝑎 is a common divisor of 𝑦, 𝑧, so 𝑎 ≤ 𝑏

If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and 
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a 
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and 
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus 
𝑥 ≤ 𝑦.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. 

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .


