
Homework 8: Finite Automata and a review of funda-
mentals
Due date: Friday December 11 at 11:59 PM (Seattle time, i.e. GMT-8)

If you work with others (and you should!), remember to follow the collaboration policy.
In general, you are graded on both the clarity and accuracy of your work. Your solution should be clear enough
that someone in the class who had not seen the problem before would understand it.
We sometimes describe approximately how long our explanations are. These are intended to help you understand
approximately how much detail we are expecting.

Be sure to read the grading guidelines for more information on what we’re looking for.

1. Suffixes [7 points]

For a language L ⊆ Σ∗, define ∼L to be the following relation on Σ∗:
x ∼L y if and only if ∀z(xz ∈ L ↔ yz ∈ L)

(a) Convince yourself ∼L is reflexive. You do not have to write anything for this part. [0 points]

(b) Convince yourself ∼L is symmetric. You do not have to write anything for this part. [0 points]

(c) Write a proof that ∼L is transitive. [7 points]

Fun fact: in the minimum DFA for any regular language, x ∼L y if and only if the DFA puts them in the same state!
Recognizing this fact is the key to proving that the minimum DFA for a regular language is unique.

2. Taking this homework in a new direction [22 points]

Call a directed graph acyclic if it has no cycles. Choose some acyclic directed graph G. For vertices u and v, we’ll
say u ≺ v if there is a path from u to v in G.

(a) Prove that ≺ is reflexive [3 points]

(b) Prove the ≺ is antisymmetric (Hint: This proof is easiest if done by contradiction; be careful about where you
start the proof!) [8 points]

(c) Prove that ≺ is transitive. [7 points]

A total-ly new direction

From parts a,b,c together we have that ≺ is a partial order (that was the “behaves kinda like ≤” prototype relation).
Recall that for partial orders, some pairs of elements might not relate in either direction (for example: divides is a
partial order, but 2 does not divide 3 and 3 does not divide 2).
A total order is a partial order where every element can be compared to every other (i.e. ∀a∀b(a ≺ b∨b ≺ a)).

(d) Draw (or otherwise describe) an acyclic graph G so that ≺ is not a total order. Give a 1 sentence description
of why it is not a total order (you do not need a full proof). [2 points]

(e) Draw (or otherwise describe) an acyclic graph G so that ≺ is a total order. Give a 1 sentence description of
why it is a total order (you do not need a full proof). [2 points]

1

https://courses.cs.washington.edu/courses/cse311/20au/syllabus/#collaboration
https://courses.cs.washington.edu/courses/cse311/20au/homework/


3. Build DFAs (Online) [15 Points]

For each of the following languages, construct a DFA that accepts exactly the given set of strings. You should submit
(and check!) your answers online at https://grinch.cs.washington.edu/cse311/fsm

Think carefully before entering your DFA; you only have 5 guesses. Because these are auto-graded, we will not
award partial credit.

You must also take a screenshot of your final submission and include that in your gradescope submission.

(a) Binary strings with at least two 1s.

(b) Binary strings that have at least one 1 and an even number of 0s.

(c) Binary strings such that none of their runs of 1s have odd length.
A “run” of 1s is a string of consecutive 1s with edges at the start of the string, end of the string, or adjacent to
a 0. “11” contains exactly one run of 1s (of length 2).
“111101” contains two runs of 1s (one of length 4, the other of length 1).
For example 1110011 is not accepted because the first three characters are an odd-length run of 1s. But
110011110 is accepted the first run of 1s has length two, and the second run of 1s has length 4.

4. Build NFAs (Online) [15 Points]

For each of the following languages, construct an NFA that accepts exactly the given set of strings. You should
submit (and check!) your answers online at https://grinch.cs.washington.edu/cse311/fsm

Think carefully before entering your NFA; you only have 5 guesses. Because these are auto-graded, we will not
award partial credit.

You must also take a screenshot of your final submission and include that in your gradescope submission.

(a) The set of binary strings that contain 11 and do not contain 00. [7 points]

(b) The set of binary strings that contain 11 or do not contain 00. [8 points]

5. We’re here to PUMP [:clap:] you up [11 points]

The pumping lemma for regular languages is a tool for showing languages are not regular. In its usual statement it
says this for all languages L:

If L is a regular language, then:
there exists a natural number p such that
for all w ∈ L with len(w) > p,
w can be broken up1 into three substrings x, y, z such that
y 6= ε, and for all natural numbers i, replacing y with yi yields a string that is also in L.

Recall that yi means y concatentated with itself i times (and y0 = ε). Let your domain of discourse be natural
numbers, strings, and languages. Use the predicates naturalNumber(), language(), string() to do domain restric-
tion. You can use standard string and set operations (like string concatenation, =, 6=, ∈, etc.) and the predicate
elementOfL(x) that returns true if and only if x ∈ L.

(a) Translate just the last two lines into a single predicate logic statement. (You do not need to translate the lines
above). Since you are only translating the last two lines, treat L and w as constants (i.e. don’t put quantifiers
in front of them) You’ll have to think about how to translate “can be broken up.” [5 points]

1by which we mean every character of w appears in exactly one of x, y, z in order. For example, if w = 111011 then x = 111, y = 011, z = ε
or x = 11, y = 10, z = 11 would be valid, but x = 101, y = 11, z = 1 would not be valid.

2

https://grinch.cs.washington.edu/cse311/fsm
https://grinch.cs.washington.edu/cse311/fsm


(b) Negate the translation you wrote in part (a). Show your work, but leave your answers as symbols. [3 points]

(c) Translate your answer from (b) into English. [3 points]

(d) Ponder the statement as a whole. So many quantifiers. You do not have to write anything for this part, but
may find this pondering useful for attempting the extra credit. [0 points]

6. Some closure at the end of the quarter [16 points]

We say that the property is “closed” under an operation if applying the operation to languages with the property
must produce another language with the property. For example, being regular is closed under union – for any
regular languages L1, L2, the language L1 ∪ L2 is also regular.

When taking the complement, let the universe be Σ∗.

(a) Prove that being regular is closed under complement, that is: for any regular language L, L is also regular.
Recall that we have multiple equivalent definitions of regular, some are better suited to this problem than
others! [7 points]

(b) Prove that Σ∗ is a regular language. [2 points]

(c) Prove that it is not the case that being irregular (i.e., not regular) is closed under both complement and union.2

For this problem, you should use proof by contradiction. Hint: use part b! [7 points]

7. Buggy [9 points]

Consider the following claim. “Irregular languages are closed under intersection.”

(a) Your friend writes the following proof. Their proof is incorrect. Identify the bug. State both the step where
the biggest bug is, and why it is incorrect. [4 points]

Proof:
1© We rephrase the original claim as “if L1 and L2 are irregular then L1 ∩ L2 is irregular.”
2© We argue by contradiction. Suppose that if L1 and L2 are irregular, then L1 ∩ L2 is regular.
3© Consider L1 = {anbncn : n ≥ 0} and L2 = {anbncn : n ≥ 0} (i.e. the same language).
4© We recall from class that L1 (and thus L2) is irregular.
5© Applying the statement in step 2©, we get that L1 ∩ L2 = L1 must be regular.
6© But we know L1 is irregular! That’s a contradiction.
7© Thus we have irregular languages are closed under intersection.

(b) Is the claim true? Say “true” or “false” then prove your answer. [5 points]

2That is show ¬(closed under complement∧ closed under union). It turns out the irregular languages are closed under complement, but not
union.

3



8. Extra Credit: Going Back to the Well [0 points]

In class, we’ll use proof by contradiction as a method of showing languages are not regular. Another common way
to prove languages are not regular is “The Pumping Lemma.” (See the statement in Question 5)

For some intuition: roughly, p corresponds to the number of states in a hypothetical DFA for L. Once a string w
has more than p characters, you have to have a cycle when the machine processes w, but then you could go around
the cycle as many times as you want (including 0 times) and still end up in the same accepting state at the end. So
some y in the string (what’s read when you go around the cycle) could be duplicated any number of times and still
be accepted. The difficulty of using the lemma to prove irregularity is we don’t know which part of the string the
cycle would be in (we’re doing proof by contradiction – the language is irrecular, so there isn’t even a DFA in real
life!) so these proofs often have cases based on all the places y could be in the string.

Use the pumping lemma to show {a311bncm : n = 311+m} is not regular. The hardest thing about using the pumping
lemma is getting the quantifiers right (there are a lot of them...) make sure you’re declaring and using the arbitrary
variables as arbitrary, and saying what the existential variables are. Usually this proof is done by contradiction
(suppose L is regular and use the pumping lemma’s guarantee to derive a contradiction) or contrapositive (show
the conclusion of the pumping lemma does not hold, and apply the contrapositive to get that the language is not
regular). You should feel free to look online or in the textbook for an example proof or two to get a sense of how
they usually go.

9. Extra Credit: Finishing Strong [0 points]

Let L be a regular language over the alphabet Σ. Define ends(L) = {v ∈ Σ∗ : ∃u ∈ Σ∗(uv ∈ L)}. Prove that ends(L)
is regular.

4


