
Homework 5: Number Theory and Induction
Changelog: This is Version 3 (posted Monday Nov 8 10 PM). We updated the due date, and corrected an additional
typo in extra credit part d (there is no “m” in the problem, and one of the mods were corrected to %.)

Due date: Wednesday November 11th at 11:59 PM (Seattle time, i.e. GMT-8)
Note the time zone change! Seattle ends daylight saving time on November 1.

If you work with others (and you should!), remember to follow the collaboration policy.
In general, you are graded on both the clarity and accuracy of your work. Your solution should be clear enough
that someone in the class who had not seen the problem before would understand it.
We sometimes describe approximately how long our explanations are. These are intended to help you understand
approximately how much detail we are expecting.

Be sure to read the grading guidelines for more information on what we’re looking for.

This homework comes in two parts. Part one is slightly shorter than a normal homework. You should aim to finish
it by Friday (just like a normal homework). You have all the tools you need to approach the problems in part 1 from
the lecture slides available at the release of this homework. But it is officially due with part two.

Part two is practice with induction (which we will start to cover on Monday Nov. 2).

We will have two separate gradescope submission boxes. Using one late day allows you to submit both parts one
day later (e.g. one late day lets you submit both parts on Tuesday Nov. 10).

The staff will focus on grading part 2 first, so that you can get that feedback in time for the midterm. We will likely
not get the part 1 feedback returned before the midterm ends.

Part I

1. Euclid’s algorithm [10 points]

Compute each of the following using Euclid’s Algorithm. Show your intermediate results both as a sequence of
gcd() calls, and with the tableau of values.

(a) gcd(225, 65) [4 points]

(b) gcd(354, 123) [5 points]

(c) gcd(330 + 1, 3) [1 point]

2. Inverses [20 points]

(a) Compute the multiplicative inverse of 15 (mod 103). Use the Extended Euclidean algorithm, showing the
tableau and the sequence of substitutions.

Express your final answer as an integer between 0 and 102 inclusive. [5 points]

(b) Find all integer solutions to
15x ≡ 11 (mod 103)

You must show all your work for this part. See lecture 13 for an example of the work needed. [8 points]
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(c) Prove there are no integer solutions to
10x ≡ 3 (mod 15)

Note: it’s not enough to say that 10 does not have a multiplicative inverse (mod 15). If that were enough,
then you could say the same for 10x ≡ 10 (mod 15), but x = 1 is a solution to that equivalence.

You’ll want to use proof by contradiction (suppose that there is an integer solution and go from there). [7
points]

3. GCD proof [6 points]

Show that if a ≡ b (mod m) and a ≡ c (mod n) then b ≡ c (mod d) where d = gcd(m,n).

4. A Proof By Contradiction [7 points]

Let p be a prime number, show that
√
p is irrational. You may want to adapt the proof that the

√
2 is irrational. You

can use the following fact without proof: For integers a, b and a prime number p: if p|(ab) then p|a or p|b.

5. Modular Exponentiation [7 points]

Compute 3138%100 using the efficient modular exponentiation algorithm. Show your intermediate results.

6. Find The Bug [16 points]

6.1. I’m not FIBbing

Your friend is doing a proof with the Fibonacci numbers. Recall that f(0) = f(1) = 1 and for all n ≥ 2, f(n) =
f(n− 1) + f(n− 2).

They are trying to show that f(4) = 5 – here is the proof they show you:

f(4) = 5

f(3) + f(2) = 5

[f(2) + f(1)] + f(2) = 5

2f(2) + 1 = 5

2f(2) = 4

2(f(1) + f(0)) = 4

2(1 + 1) = 4

4 = 4

(a) Clearly explain why the proof is incorrect. Your explanation must deal with the proof directly, not just the
statement they are showing (e.g. just providing a counter-example is not sufficient for this part). [3 points]

(b) If the statement is correct, then write a correct proof. If it is incorrect, provide a counter example. [5 points]
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6.2. Well...maybe I’m fibbing

Another friend wishes to show (x− 3)(−x+ 4) = x2 − 7x+ 12 is true for all x. They show you their proof:

(x− 3)(−x+ 4) = x2 − 7x+ 12

[(x− 3)(−x+ 4)]2 = (x2 − 7x+ 12)2

(x2 − 6x+ 9)(x2 − 8x+ 16) = (x4 − 7x3 + 12x2) + (−7x3 + 49x2 − 84x) + (12x2 − 84x+ 144)

(x4 − 8x3 + 16x2) + (−6x3 + 48x2 − 96x) + (9x2 − 72x+ 144) = x4 − 14x3 + 73x2 − 168x+ 144

x4 − 14x3 + 73x2 − 168x+ 144 = x4 − 14x3 + 73x2 − 168x+ 144

(a) Clearly explain why the proof is incorrect. Your explanation must deal with the proof directly, not just the
statement they are showing (e.g. just providing a counter-example is not sufficient for this part). [3 points]

(b) If the statement is correct, then write a correct proof. If it is incorrect, provide a counter example. [5 points]

Extra Credit: Exponentially increasing fun [0 points]

Since a%n ≡ a (mod n), we know that we can reduce the base of an exponent in (mod n) arithmetic. That is:
ak ≡ (a%n)k (mod n). But the same is not true of the exponent! That is, we cannot say that ak ≡ ak%n (mod n).
Consider, for instance, that 210%3 = 1 but 210%3%3 = 21%3 = 2. The correct way to simplify exponents is quite a
bit more subtle. In this problem you’ll prove it in steps.

(a) Let R = {t ∈ Z : 1 ≤ t ≤ n− 1 ∧ gcd(t, n) = 1}. Define the set aR = {ax%n : x ∈ R}. Prove that aR = R for
every integer a > 0 with gcd(a, n) = 1.

(b) Consider the product of all elements in R (taken %n) and consider the product of all the elements in aR
(again, taken %n). By comparing these two expressions, conclude that for all a ∈ R we have aϕ(n) ≡ 1
(mod n) where ϕ(n) = |R|.

(c) Use the previous part to show that for any b ≥ 0 and a ∈ R we have ab ≡ ab%ϕ(n) (mod n).

(d) Now suppose that y = xe%n for some x with gcd(x, n) = 1 and e some integer ≥ 0 such that gcd(e, ϕ(n)) = 1.
Let d = e−1 (mod ϕ(n)). Prove that yd ≡ x (mod n).

(e) Prove the following two facts about ϕ: First, if p is prime then ϕ(p) = p− 1. Second, for any positive integers
a and b with gcd(a, b) = 1, we have ϕ(ab) = ϕ(a)ϕ(b).

These facts together are the basis for the most-widely used “public key encryption system.” One chooses n = pq
for large primes p and q, and a value of e. The numbers n and e are made public to anyone who wants to send a
message securely. To send a message x, the sender computes y = xe%n and sends y (the “encrypted text”). To
decrypt, one computes yd%n (note that the recipient must be the one who chose p, q so they can calculate d). The
security of the system relies on it being hard to compute d from just e and m.
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Part II

7. Induction Divides [20 points]

Prove that 7 | (8n − 1) for all n ∈ N, by induction on n.

Hint: In your inductive step, you’ll need to be creative to apply your inductive hypothesis. Focus on forcing the
right expression to appear.

8. Induction Code [20 points]

Consider the following code snippet.

public int Mystery(int n){

if(n < 0)

throw new InvalidInputException();

if(n == 0)

return 2;

if(n == 1)

return 7;

return Mystery(n-1) + 2*Mystery(n-2);

}

Use induction to show that Mystery(n)= 3 · 2n + (−1)n+7 for all integers n ≥ 0.

9. Well that just doesn’t sound right [8 points]

Consider the following (very incorrect) induction proof:

1© Let P (n) be “5n = 0”
We show P (n) holds for all n ∈ N by induction on n.

2© Base Case: n = 0
If n = 0 then 5n = 5 · 0 = 0, so P (0) is true.

3© Inductive Hypothesis: Suppose P (n) holds for n = 0, . . . , k for an arbitrary integer k ≥ 0

4© Inductive Step:
A© We want to prove P (k + 1) is true, i.e. 5(k + 1) = 0.
B© Observe that 5(k + 1) = 5(s) + 5(t). for integers s, t with 0 ≤ s < k + 1 and 0 ≤ t < k + 1.
C© Applying the inductive hypothesis twice, we have 5s = 0 and 5t = 0.
D© Substituting both into the original equation, we get: 5(k + 1) = 0 + 0, so 5(k + 1) = 0, as required.
5© The result follows for all n ≥ 0 by induction.

(a) Find the smallest counterexample to the claim that P (n) holds for all n ∈ N. [3 points] You should both
(1) show that your example is a counterexample and (2) argue why all smaller natural numbers are not
counterexamples.

(b) Clearly identify the flaw in the proof; it will help to run through the proof with your smallest counterexample.
For ease of explanation, we’ve taken the (unusual) step of labelling every sentence. [5 points]
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