CSE 311: Foundations of Computing I

Section 9: DFAs, NFAs, and Minimization Solutions

1. DFAs

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1\}$.
(a) Strings that do not contain the substring 101.

Solution:

q_{3} : string that contain 101.
q_{2} : strings that don't contain 101 and end in 10.
q_{1} : strings that don't contain 101 and end in 1.
$q_{0}: \varepsilon, 0$, strings that don't contain 101 and end in 00 .
(b) Strings that contain an even number of 1 s and odd number of 0 's and do not contain the substring 10 .

Solution:

2. FSMs with Output

Describe the output of this machine, which operates on binary strings.

Solution:

The states of the machine receiving the following strings:
q_{0} : Start state only.
q_{1} : Receives strings ending with 0 , where the previous digit does not exist or is a 1 .
q_{2} : Receives strings ending with at least two 0 s
q_{3} : Receives strings ending with 1 , where the previous digit does not exist or is a 0 .
q_{4} : Receives strings ending with at least two 1 s .
This outputs a 0 when a first 0 is reached and then none as it sees more 0 s directly afterward, and likewise for 1 s . In other words, this compresses strings 0 s into a single 0 and strings of 1 s into a single 1 .

3. NFAs

(a) What language does the following NFA accept?

Solution:

All strings of only 0 's and 1 's not containing more than one 1 .
(b) Create an NFA for the language "all binary strings that have a 1 as one of the last three digits".

Solution:

The following is one such NFA:

4. DFA Minimization

Minimize the following DFA. For each step of the algorithm write down the groups (of states), which group was split in the step the reason for splitting that group:

Solution:

Step 1: q_{0}, q_{2} are final states and the rest are not final. So, we start with the initial partition with the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$ and group 2 is $\left\{q_{1}, q_{3}, q_{4}\right\}$.

Step 2: q_{1} is sending a to group 1 while q_{3}, q_{4} are sending a to group 2. So, we divide group 2. We get the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$, group 3 is $\left\{q_{1}\right\}$ and group 4 is $\left\{q_{3}, q_{4}\right\}$.

Step 3: q_{0} is sending a to group 3 and q_{2} is sending a to group 4. So, we divide group 1 . We will have the following groups: group 3 is $\left\{q_{1}\right\}$, group 4 is $\left\{q_{3}, q_{4}\right\}$, group 5 is $\left\{q_{0}\right\}$ and group 6 is $\left\{q_{2}\right\}$.

The minimized DFA is the following:

