CSE 311: Foundations of Computing I

Section 7: Strong Induction and Recursive Sets

1. Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \quad \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

2. Structural Induction

(a) Consider the following recursive definition of strings Σ^{*} over the alphabet Σ.

Basis Step: ε is a string
Recursive Step: If w is a string and $a \in \Sigma$ is a character, then $w a$ is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\operatorname{len}(\varepsilon) & =0 \\
\operatorname{len}(w a) & =1+\operatorname{len}(w)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\operatorname{double}(\varepsilon) & =\varepsilon \\
\text { double }(w a) & =\operatorname{double}(w) a a .
\end{array}
$$

Prove that for any string x, len $(\operatorname{double}(x))=2 \operatorname{len}(x)$.
(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\operatorname{leaves}(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\text { Tree }(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2$ for all Trees T.

3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
(a) Binary strings of even length.
(b) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s .

4. Regular Expressions

(a) Write a regular expression that matches base 10 non-negative numbers (e.g., there should be no leading zeroes).
(b) Write a regular expression that matches all non-negative base-3 numbers that are divisible by 3 .
(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".

