CSE 311: Foundations of Computing I

Section 7: Strong Induction and Recursive Sets Solutions

1. Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \quad \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

Solution:

Let $\mathrm{P}(n)$ be " $f(n)=n$ ". We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by strong induction on n.
Base Cases $(n=0,1): f(0)=0$ by definition, so $\mathrm{P}(0)$ holds, and $f(1)=1$, so $\mathrm{P}(1)$ holds.
Induction Hypothesis: Assume that for some arbitrary integer $k \geq 1, \mathrm{P}(j)$ holds for all $0 \leq j \leq k$. That is, for each number in this range, we have $f(j)=j$.

Induction Step: We show $\mathrm{P}(k+1)$, i.e. that $f(k+1)=k+1$.
Since $k+1 \geq 2$, we have

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) & & \text { Definition of } f \\
& =2(k)-f(k-1) & & \text { Inductive Hypothesis } \\
& =2(k)-(k-1) & & \text { Inductive Hypothesis } \\
& =k+1 & & \text { Algebra }
\end{aligned}
$$

which is $\mathrm{P}(k+1)$.
Therefore, $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

2. Structural Induction

(a) Consider the following recursive definition of strings Σ^{*} over the alphabet Σ.

Basis Step: ε is a string
Recursive Step: If w is a string and $a \in \Sigma$ is a character, then $w a$ is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\operatorname{len}(\varepsilon) & =0 \\
\operatorname{len}(w a) & =1+\operatorname{len}(w)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\operatorname{double}(\varepsilon) & =\varepsilon \\
\text { double }(w a) & =\operatorname{double}(w) a a .
\end{array}
$$

Prove that for any string x, len $(\operatorname{double}(x))=2 \operatorname{len}(x)$.

Solution:

For a string x, let $\mathrm{P}(x)$ be "len $(\operatorname{double}(x))=2 \operatorname{len}(x)$. We prove $\mathrm{P}(x)$ for all strings $x \in \Sigma^{*}$ by structural induction.

Base Case. We show $\mathrm{P}(\varepsilon)$ holds. By definition len $(\operatorname{double}(\varepsilon))=\operatorname{len}(\varepsilon)=0=2 \operatorname{len}(\varepsilon)$, as desired.
Induction Hypothesis. Suppose $\mathrm{P}(w)$ holds for some arbitrary string w.
Induction Step. We show that $\mathrm{P}(w a)$ holds for any character $a \in \Sigma$.

$$
\begin{aligned}
\operatorname{len}(\operatorname{double}(w a)) & =\operatorname{len}(\operatorname{double}(w) a a) & & \text { [By Definition of double] } \\
& =1+\operatorname{len}(\operatorname{double}(w) a) & & {[\text { By Definition of len] }} \\
& =1+1+\operatorname{len}(\operatorname{double}(w)) & & {[\text { By Definition of len] }} \\
& =2+2 \operatorname{len}(w) & & {[\text { By IH] }} \\
& =2(1+\operatorname{len}(w)) & & {[\text { Algebra }] } \\
& =2(\operatorname{len}(w a)) & & {[\text { By Definition of len] }}
\end{aligned}
$$

This proves $\mathrm{P}(w a)$.
Thus, $\mathrm{P}(x)$ holds for all strings $x \in \Sigma^{*}$ by structural induction.
(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\operatorname{leaves}(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2$ for all Trees T.

Solution:

In this problem, we define a strengthened predicate. For a tree T, let P be leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$. We prove P for all trees T by structural induction.

Base Case. We show that $\mathrm{P}(\cdot)$ holds. By definition of leaves(.), leaves $(\bullet)=1$ and $\operatorname{size}(\bullet)=1$. So, leaves $(\bullet)=1 \geq 1 / 2+1 / 2=\operatorname{size}(\bullet) / 2+1 / 2$.
Induction Hypothesis: Suppose $\mathrm{P}(L)$ and $\mathrm{P}(R)$ hold for some arbitrary trees L and R.
Induction Step: We prove that $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$ holds.

$$
\begin{array}{rlrl}
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\text { leaves }(R) & & \text { [By Definition of leaves] } \\
& \geq(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & {[\text { By IH] }} \\
& =(\operatorname{size}(L)+\operatorname{size}(R)+1) / 2+1 / 2 & & \\
& =\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) / 2+1 / 2 & & {[\text { By Definition of size }]}
\end{array}
$$

This proves $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$.
Thus, the $\mathrm{P}(T)$ holds for all trees T.

3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
(a) Binary strings of even length.

Solution:

Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $x 00, x 01, x 10, x 11 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.
"Brief" Justification: We will show that $x \in S$ iff x has even length (i.e., $|x|=2 n$ for some $n \in \mathbb{N}$). (Note: "brief" is in quotes here. Try to write shorter explanations in your homework assignment when possible!)
Suppose $x \in S$. If x is the empty string, then it has length 0 , which is even. Otherwise, x is built up from the empty string by repeated application of the recursive step, so it is of the form $x_{1} x_{2} \cdots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$. In that case, we can see that $|x|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|=2 n$, which is even.
Now, suppose that x has even length. If it's length is zero, then it is the empty string, which is in S. Otherwise, it has length $2 n$ for some $n>0$, and we can write x in the form $x_{1} x_{2} \cdots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$ has length 2 . Hence, we can see that x can be built up from the empty string by applying the recursive step with x_{1}, then x_{2}, and so on up to x_{n}, which shows that $x \in S$.
(b) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s .

Solution:

If the string does not contain 10 , then the first 1 in the string can only be followed by more 1 s . Hence, it must be of the form $0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$. The second condition says that we have $m \leq n$.
Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $0 x 1 \in S$ and $x 1 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.
Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 1 s on the right. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as $x y$, where $x=0^{m} 1^{m}$ and $y=1^{n-m}$, since $n \geq m$. We can build up the string x from the empty string by applying the rule $x \mapsto 0 x 1 m$ times and then produce the string $x y$ by applying the rule $x \mapsto x 1 n-m$ times, which shows that the string is in S.

4. Regular Expressions

(a) Write a regular expression that matches base 10 non-negative numbers (e.g., there should be no leading zeroes).

Solution:

$$
0 \cup\left((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^{*}\right)
$$

(b) Write a regular expression that matches all non-negative base- 3 numbers that are divisible by 3 .

Solution:

$$
0 \cup\left((1 \cup 2)(0 \cup 1 \cup 2)^{*} 0\right)
$$

(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring "000".

Solution:

$$
\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon) 111\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon)
$$

(If you don't want the substring 000 , the only way you can produce 0 s is if there are only one or two 0 s in a row, and they are immediately followed by a 1 or the end of the string.)

