
CSE 311: Foundations of Computing I
Section 7: Strong Induction and Recursive Sets Solutions

1. Cantelli’s Rabbits
Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f :

f(0) = 0

f(1) = 1

f(n) = 2f(n− 1)− f(n− 2) for n ≥ 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:
Let P(n) be “f(n) = n”. We prove that P(n) is true for all n ∈ N by strong induction on n.

Base Cases (n = 0, 1): f(0) = 0 by definition, so P(0) holds, and f(1) = 1, so P(1) holds.

Induction Hypothesis: Assume that for some arbitrary integer k ≥ 1, P(j) holds for all 0 ≤ j ≤ k. That is,
for each number in this range, we have f(j) = j.

Induction Step: We show P(k + 1), i.e. that f(k + 1) = k + 1.
Since k + 1 ≥ 2, we have

f(k + 1) = 2f(k)− f(k − 1) Definition of f
= 2(k)− f(k − 1) Inductive Hypothesis
= 2(k)− (k − 1) Inductive Hypothesis
= k + 1 Algebra

which is P(k + 1).

Therefore, P(n) is true for all n ∈ N.

2. Structural Induction
(a) Consider the following recursive definition of strings Σ∗ over the alphabet Σ.

Basis Step: ε is a string
Recursive Step: If w is a string and a ∈ Σ is a character, then wa is a string.
Recall the following recursive definition of the function len:

len(ε) = 0

len(wa) = 1 + len(w)

Now, consider the following recursive definition:

double(ε) = ε

double(wa) = double(w)aa.

Prove that for any string x, len(double(x)) = 2len(x).

1

Solution:
For a string x, let P(x) be “len(double(x)) = 2len(x). We prove P(x) for all strings x ∈ Σ∗ by structural
induction.

Base Case. We show P(ε) holds. By definition len(double(ε)) = len(ε) = 0 = 2len(ε), as desired.
Induction Hypothesis. Suppose P(w) holds for some arbitrary string w.
Induction Step. We show that P(wa) holds for any character a ∈ Σ.

len(double(wa)) = len(double(w)aa) [By Definition of double]
= 1 + len(double(w)a) [By Definition of len]
= 1 + 1 + len(double(w)) [By Definition of len]
= 2 + 2len(w) [By IH]
= 2(1 + len(w)) [Algebra]
= 2(len(wa)) [By Definition of len]

This proves P(wa).

Thus, P(x) holds for all strings x ∈ Σ∗ by structural induction.

(b) Consider the following definition of a (binary) Tree:
Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

Also, recall the definition of size on trees:
size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T) ≥ size(T)/2 for all Trees T .

Solution:
In this problem, we define a strengthened predicate. For a tree T , let P be leaves(T) ≥ size(T)/2 + 1/2.
We prove P for all trees T by structural induction.

Base Case. We show that P(·) holds. By definition of leaves(.), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2.

Induction Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L and R.
Induction Step: We prove that P(Tree(•, L,R)) holds.

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]
= (size(L) + size(R) + 1)/2 + 1/2

= size(Tree(•, L,R))/2 + 1/2 [By Definition of size]

This proves P(Tree(•, L,R)).

Thus, the P(T) holds for all trees T .

2

3. Recursively Defined Sets of Strings
For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly
justify that your solution is correct.

(a) Binary strings of even length.

Solution:
Basis: ε ∈ S.
Recursive Step: If x ∈ S, then x00, x01, x10, x11 ∈ S.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.
“Brief” Justification: We will show that x ∈ S iff x has even length (i.e., |x| = 2n for some n ∈ N).
(Note: “brief” is in quotes here. Try to write shorter explanations in your homework assignment when
possible!)
Suppose x ∈ S. If x is the empty string, then it has length 0, which is even. Otherwise, x is built up from
the empty string by repeated application of the recursive step, so it is of the form x1x2 · · ·xn, where each
xi ∈ {00, 01, 10, 11}. In that case, we can see that |x| = |x1|+ |x2|+ · · ·+ |xn| = 2n, which is even.
Now, suppose that x has even length. If it’s length is zero, then it is the empty string, which is in S.
Otherwise, it has length 2n for some n > 0, and we can write x in the form x1x2 · · ·xn, where each
xi ∈ {00, 01, 10, 11} has length 2. Hence, we can see that x can be built up from the empty string by
applying the recursive step with x1, then x2, and so on up to xn, which shows that x ∈ S.

(b) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:
If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence,
it must be of the form 0m1n for some m,n ∈ N. The second condition says that we have m ≤ n.
Basis: ε ∈ S.
Recursive Step: If x ∈ S, then 0x1 ∈ S and x1 ∈ S.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.
Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after
a 1 since it only adds 1s on the right. Hence, every string in S satisfies the property.
In the other direction, from our discussion above, any string of this form can be written as xy, where
x = 0m1m and y = 1n−m, since n ≥ m. We can build up the string x from the empty string by applying
the rule x 7→ 0x1 m times and then produce the string xy by applying the rule x 7→ x1 n − m times,
which shows that the string is in S.

3

4. Regular Expressions
(a) Write a regular expression that matches base 10 non-negative numbers (e.g., there should be no leading

zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all non-negative base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

(If you don’t want the substring 000, the only way you can produce 0s is if there are only one or two 0s
in a row, and they are immediately followed by a 1 or the end of the string.)

4

