CSE 311: Foundations of Computing I

Section 6: Induction

1. Extended Euclidean Algorithm

- (a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.
- (b) Now, solve $7z \equiv 2 \pmod{33}$.

2. A Strict Inequality

Prove that $6n + 6 < 2^n$ for all $n \ge 6$.

3. Divisibility by Induction

Prove that $9 \mid n^3 + (n+1)^3 + (n+2)^3$ for all n > 1 by induction.

4. Another Inequality

Prove that, for all integers $n \ge 1$, if you have numbers a_1, \dots, a_n and b_1, \dots, b_n , with $\forall i \in [n]$. $a_i \le b_i$, then:

$$\sum_{i=1}^{n} a_i \le \sum_{i=1}^{n} b_i$$