CSE 311: Foundations of Computing I

Section 6: Induction Solutions

1. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

Solution:

First, we find the gcd:

$$
\begin{array}{rlrl}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) & 33 & =7 \bullet 4+5 \\
& =\operatorname{gcd}(5,2) & 7 & =5 \bullet 1+2 \\
& =\operatorname{gcd}(2,1) & 5 & =2 \bullet 2+1 \\
& =\operatorname{gcd}(1,0) & 2 & =1 \bullet 2+0 \\
& =1 & \tag{5}
\end{array}
$$

Next, we re-arrange equations (1) - (3) by solving for the remainder:

$$
\begin{align*}
& 1=5-2 \cdot 2 \tag{6}\\
& 2=7-5 \cdot 1 \tag{7}\\
& 5=33-7 \bullet 4 \tag{8}
\end{align*}
$$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-(7-5 \cdot 1) \bullet 2 \\
& =3 \bullet 5-7 \bullet 2 \\
& =3 \bullet(33-7 \bullet 4)-7 \bullet 2 \\
& =33 \bullet 3+7 \bullet-14
\end{aligned}
$$

So, $1=33 \bullet 3+7 \bullet-14$. Thus, $33-14=19$ is the multiplicative inverse of $7 \bmod 33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$.

Solution:

If z is a solution to that equation, then multiplying both sides by 19 , we have $z=1 z \equiv 19 \cdot 7 z \equiv 19 \cdot 2 \equiv$ $5(\bmod 33)$. Hence, every solution must be of the form $z=5+33 k$ for some $k \in \mathbb{Z}$.
Furthermore, we can see that every number of this form is a solution since $(7(5+33 k)) \bmod 33=$ $(35+7 \cdot 33 k) \bmod 33=35 \bmod 33=2=2 \bmod 33$.

2. A Strict Inequality

Prove that $6 n+6<2^{n}$ for all $n \geq 6$.

Solution:

Let $P(n)$ be " $6 n+6<2^{n}$ ". We will prove $P(n)$ for all integers $n \geq 6$ by induction.
Base Case $(n=6): 6 \cdot 6+6=42<64=2^{6}$, so $P(6)$ holds.
Induction Hypothesis: Assume that $6 j+6<2^{j}$ for an arbitrary integer $j \geq 6$.
Induction Step: Goal: Show $6(j+1)+6<2^{j+1}$

$$
\begin{aligned}
6(j+1)+6 & =6 j+6+6 & & \\
& <2^{j}+6 & & {[\text { Induction Hypothesis }] } \\
& <2^{j}+2^{j} & & {\left[\text { Since } 2^{j}>6, \text { since } j \geq 6\right] } \\
& <2 \cdot 2^{j} & & \\
& <2^{j+1} & &
\end{aligned}
$$

which shows that $P(j+1)$ is true.
Conclusion: $P(n)$ holds for all integers $n \geq 6$ by induction.

3. Divisibility by Induction

Prove that $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ for all $n>1$ by induction.

Solution:

Let $P(n)$ be " $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ ". We will prove $P(n)$ for all integers $n>1$ by induction.
Base Case $(n=2): 2^{3}+(2+1)^{3}+(2+2)^{3}=8+27+64=99=9 \cdot 11$, so $9 \mid 2^{3}+(2+1)^{3}+(2+2)^{3}$.
Induction Hypothesis: Assume that $9 \mid j^{3}+(j+1)^{3}+(j+2)^{3}$ for an arbitrary integer $j>1$. Note that this is equivalent to assuming that $j^{3}+(j+1)^{3}+(j+2)^{3}=9 k$ for some integer k.

Induction Step: Goal: Show $9 \mid(j+1)^{3}+(j+2)^{3}+(j+3)^{3}$

$$
\begin{aligned}
(j+1)^{3}+(j+2)^{3}+(j+3)^{3} & =(j+3)^{3}+9 k-j^{3} \text { for some integer } k \quad \text { [Induction Hypothesis] } \\
& =j^{3}+9 j^{2}+27 j+27+9 k-j^{3} \\
& =9 j^{2}+27 j+27+9 k \\
& =9\left(j^{2}+3 j+3+k\right)
\end{aligned}
$$

So $9 \mid(j+1)^{3}+(j+2)^{3}+(j+3)^{3}$, which is $P(j+1)$.
Conclusion: $P(n)$ holds for all integers $n>1$ by induction.

4. Another Inequality

Prove that, for all integers $n \geq 1$, if you have numbers a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}, with $\forall i \in[n] . a_{i} \leq b_{i}$, then:

$$
\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n} b_{i}
$$

Solution:

Let $\mathrm{P}(n)$ be the statement "if $a_{1} \leq b_{1}, a_{2} \leq b_{2}, \ldots, a_{n} \leq b_{n}$, then $\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n} b_{i}$ ". We prove that $\mathrm{P}(n)$ is true for all integers $n \geq 1$ by induction on n :

Base Case ($n=1$). Suppose $a_{1} \leq b_{1}$. Using the definition of summation, we can see that

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{1} a_{i}=a_{1} \leq b_{1}=\sum_{i=1}^{1} b_{i}=\sum_{i=1}^{n} b_{i},
$$

so the claim is true for $n=1$.
Induction Hypothesis. Suppose that $P(k)$ holds for an arbitrary integer $k \geq 1$.
Induction Step. Suppose that $a_{1} \leq b_{1}, a_{2} \leq b_{2}, \ldots, a_{k+1} \leq b_{k+1}$. Then, we can calculate

$$
\begin{array}{rlrl}
\sum_{i=1}^{k+1} a_{i} & =\sum_{i=1}^{k} a_{i}+a_{k+1} & & \text { [Splitting the summation] } \\
& \leq \sum_{i=1}^{k} b_{i}+a_{k+1} & & {[\mathrm{By} \mathrm{IH}]} \\
& \leq \sum_{i=1}^{k} b_{i}+b_{k+1} & & {[\text { By Assumption }]} \\
& \leq \sum_{i=1}^{k+1} b_{i} & {[\text { Algebra }]}
\end{array}
$$

This shows $P(k+1)$.
Therefore, we have shown the claim for all $n \in \mathbb{N}$ by induction.

