
CSE 311: Foundations of Computing I
Section 4: English Proofs and Sets Solutions

1. Odds and Ends
Here is a formal proof that, for any even integer, there is an odd integer greater than it.

1. Let x be an arbitrary integer
2.1. Even(x) Assumption
2.2. ∃n (x = 2n) Defn of Even: 2.1
2.3. x = 2k Elim ∃: 2.2
2.4. Let y = 2k + 1

2.5. ∃n (y = 2n+ 1) Intro ∃: 2.4
2.6. Odd(y) Defn of Odd: 2.5
2.7. 2k + 1 > 2k Prop of "+"
2.8. y > 2k Prop of "=": 2.7, 2.4
2.9. y > x Prop of "=": 2.8, 2.3

2.10. Odd(y) ∧ (y > x) Intro ∧: 2.6, 2.9
2.11. ∃z (Odd(z) ∧ (z > x)) Intro ∃: 2.10

2. Even(x) → ∃z (Odd(z) ∧ (z > x)) Direct Proof
3. ∀x (Even(x) → ∃z (Odd(z) ∧ (z > x))) Intro ∀: 1, 2

Translate this formal proof to an English proof.

Solution:
Let x be an arbitrary integer. Suppose that x is even. By the definition of even, we know that x = 2k for some
integer k. Now, we define y to be the integer 2k + 1, which is odd by the definition of odd. We know that
2k + 1 > 2k regardless of the value of k, so we can see that y is both odd and satisfies y > x. Since x was
arbitrary, we have shown that every even integer has an odd integer greater than it.
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2. Primality Checking
When checking if a number n is prime by brute force, it is only necessary to check possible factors up to

√
n.

Specifically, we can show the following. Let n, a, and b be positive integers. Here is a proof that, if n = ab,
then either a or b is at most

√
n.

1.1. n = ab Assumption
1.2.1 ¬(a ≤

√
n ∨ b ≤

√
n) Assumption

1.2.2 (a >
√
n) ∧ (b >

√
n) De Morgan: 1.2.1

1.2.3 a >
√
n Elim ∧: 1.2.2

1.2.4 b >
√
n Elim ∧: 1.2.2

1.2.5 ab >
√
n
√
n = n

Prop of ">": 1.2.3, 1.2.4
Algebra

1.2.6 (ab = n) ∧ (ab > n) Intro ∧: 1.1, 1.2.5
1.2.7 F Prop of ">", 1.2.6

1.2. ¬(a ≤
√
n ∨ b ≤

√
n) → F Direct Proof

1.3. ¬¬(a ≤
√
n ∨ b ≤

√
n) ∨ F Law of Implication: 1.2

1.4. ¬¬(a ≤
√
n ∨ b ≤

√
n) Identity: 1.3

1.5. a ≤
√
n ∨ b ≤

√
n Double Negation: 1.4

1. (n = ab) → (a ≤
√
n ∨ b ≤

√
n) Direct Proof

Translate this formal proof to an English proof. (Hint: notice which of the proof strategies is being used in part
of this proof. Our proof strategies each have special, often shorter, English translations.)

Solution:
Suppose that n = ab. Suppose for contradiction that a, b >

√
n. It follows that ab >

√
n
√
n = n. We cannot

have both a = n and ab > n, so this is a contradiction. It follows that a or b is at most
√
n.

3. How Many Elements?
For each of these, how many elements are in the set? If the set has infinitely many elements, say so.

(a) A = {1, 2, 3, 2}

Solution:
3

(b) B = {{}, {{}}, {{}, {}}, {{}, {}, {}}, . . . }

Solution:

B = {{}, {{}}, {{}, {}}, {{}, {}, {}}, . . . }
= {{}, {{}}, {{}}, {{}}, . . . }
= {∅, {∅}}

So, there are two elements in B.

(c) C = A× (B ∪ {7})
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Solution:
C = {1, 2, 3}×{∅, {∅}, 7} = {(a, b) | a ∈ {1, 2, 3}, b ∈ {∅, {∅}, 7}}. It follows that there are 3× 3 = 9
elements in C.

(d) D = ∅

Solution:
0.

(e) E = {∅}

Solution:
1.

(f) F = P({∅})

Solution:
21 = 2. The elements are F = {∅, {∅}}.

4. Game, Set, Match
Let A, B, and C be arbitrary sets. Consider the claim that A \B ⊆ A ∪ C.

(a) Write a formal proof of the claim.

Solution:
1. Let x be an arbitrary object.

2.1. x ∈ A \B Assumption
2.2. (x ∈ A) ∧ ¬(x ∈ B) Defn of “\”: 2.1
2.3. x ∈ A Elim ∧: 2.2
2.4. (x ∈ A) ∨ (x ∈ C) Intro ∨: 2.3
2.5. x ∈ A ∪ C Defn of ∪: 2.4

2. (x ∈ A \B) → (x ∈ A ∪ C) Direct Proof
3. ∀x ((x ∈ A \B) → (x ∈ A ∪ C)) Intro ∀: 1, 2
4. A \B ⊆ A ∪ C Defn of ⊆: 3

(b) Translate your formal proof to an English proof.

Solution:
Let x be an arbitrary object. Suppose that x ∈ A \B. By definition, this means that x ∈ A and x 6∈ B.
Since x ∈ A, we have x ∈ A∪C by the definition of ∪. Since x was arbitrary, this shows A \B ⊆ A∪C.

5. Bump, Set, Spike
Prove each of the following set identities. For each, give an English proof, but feel free to use a chain of
equivalences as part of that proof (as in the "meta-theorem" from lecture), and let U denote the universe.

(a) For any sets A,B, we have A ∩B = A \B .
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Solution:
Let A and B be arbitrary sets. Let x be an arbitrary object. Then, we can see that

x ∈ A ∩B ≡ x ∈ A ∧ x ∈ B Defn of ∩
≡ x ∈ A ∧ x 6∈ B Defn of ·
≡ x ∈ A \B Defn of “\”

Thus, we have x ∈ A ∩B ↔ x ∈ A \B. Since x was arbitrary, this shows that A ∩B = A \B. Since A
and B were arbitrary, the claim follows.

(b) For any set A, we have A = A.

Solution:
Let A be an arbitrary set. Let x be an arbitrary object. Then, we can see that

x ∈ A ≡ ¬(x ∈ A) Defn of ·
≡ ¬(¬(x ∈ A)) Defn of ·
≡ x ∈ A Double Negation

Thus, we have x ∈ A ↔ x ∈ A. Since x was arbitrary, this shows that A = A. Since A was arbitrary,
the claim follows.

(c) For any sets A and B, we have (A⊕B)⊕B = A.

Solution:
Let A and B be arbitrary sets. Let x be an arbitrary object. Then, we can see that

x ∈ (A⊕B)⊕B

≡ (x ∈ A⊕B)⊕ (x ∈ B) Defn of ⊕ (sets)
≡ ((x ∈ A)⊕ (x ∈ B))⊕ (x ∈ B) Defn of ⊕ (sets)
≡ (x ∈ A)⊕ ((x ∈ B)⊕ (x ∈ B)) Associativity
≡ (x ∈ A)⊕ (((x ∈ B) ∧ ¬(x ∈ B)) ∨ (¬(x ∈ B) ∧ (x ∈ B))) Defn of ⊕ (logic)
≡ (x ∈ A)⊕ (F ∨ (¬(x ∈ B) ∧ (x ∈ B))) Negation
≡ (x ∈ A)⊕ (F ∨ F) Negation
≡ (x ∈ A)⊕ F Idempotence
≡ ((x ∈ A) ∧ ¬F) ∨ (¬(x ∈ A) ∧ F) Defn of ⊕ (logic)
≡ ((x ∈ A) ∧ ¬F) ∨ F Domination
≡ (x ∈ A) ∧ ¬F Identity
≡ (x ∈ A) ∧ T Defn of ¬
≡ x ∈ A Identity

Thus, we have x ∈ (A ⊕ B) ⊕ B ↔ x ∈ A. Since x was arbitrary, this shows that (A ⊕ B) ⊕ B = A.
Since A and B were arbitrary, the claim follows.

4


