CSE 311: Foundations of Computing I

Section 4: English Proofs and Sets Solutions

1. Odds and Ends

Here is a formal proof that, for any even integer, there is an odd integer greater than it.

1. Let x be an arbitrary integer
2.1. Even (x) Assumption
2.2. $\exists n(x=2 n) \quad$ Defn of Even: 2.1
2.3. $x=2 k \quad$ Elim $\exists: 2.2$
2.4. Let $y=2 k+1$
2.5. $\exists n(y=2 n+1) \quad$ Intro $\exists: 2.4$
2.6. $\operatorname{Odd}(y) \quad$ Defn of Odd: 2.5
2.7. $2 k+1>2 k \quad$ Prop of " + "
2.8. $y>2 k \quad$ Prop of " $=$ ": 2.7, 2.4
2.9. $y>x \quad$ Prop of " $=$ ": 2.8, 2.3
2.10. $\operatorname{Odd}(y) \wedge(y>x) \quad$ Intro $\wedge: 2.6,2.9$
2.11. $\exists z(\operatorname{Odd}(z) \wedge(z>x)) \quad$ Intro $\exists: 2.10$
2. Even $(x) \rightarrow \exists z(\operatorname{Odd}(z) \wedge(z>x)) \quad$ Direct Proof
3. $\forall x(\operatorname{Even}(x) \rightarrow \exists z(\operatorname{Odd}(z) \wedge(z>x))) \quad$ Intro $\forall: 1,2$

Translate this formal proof to an English proof.

Solution:

Let x be an arbitrary integer. Suppose that x is even. By the definition of even, we know that $x=2 k$ for some integer k. Now, we define y to be the integer $2 k+1$, which is odd by the definition of odd. We know that $2 k+1>2 k$ regardless of the value of k, so we can see that y is both odd and satisfies $y>x$. Since x was arbitrary, we have shown that every even integer has an odd integer greater than it.

2. Primality Checking

When checking if a number n is prime by brute force, it is only necessary to check possible factors up to \sqrt{n}.
Specifically, we can show the following. Let n, a, and b be positive integers. Here is a proof that, if $n=a b$, then either a or b is at most \sqrt{n}.
1.1. $n=a b$
Assumption
1.2.1 $\neg(a \leq \sqrt{n} \vee b \leq \sqrt{n}) \quad$ Assumption
1.2.2 $(a>\sqrt{n}) \wedge(b>\sqrt{n}) \quad$ De Morgan: 1.2.1
1.2.3 $a>\sqrt{n} \quad \operatorname{Elim} \wedge: 1.2 .2$
1.2.4 $b>\sqrt{n}$
Elim \wedge : 1.2.2
1.2.5 $a b>\sqrt{n} \sqrt{n}=n \quad \begin{aligned} & \text { Prop of } \\ & \text { Algebra }\end{aligned}$
1.2.6 $\quad(a b=n) \wedge(a b>n) \quad$ Intro $\wedge: 1.1,1.2 .5$
1.2.7 F Prop of ">", 1.2.6
1.2. $\neg(a \leq \sqrt{n} \vee b \leq \sqrt{n}) \rightarrow \mathrm{F}$

Direct Proof

1.3. $\neg \neg(a \leq \sqrt{n} \vee b \leq \sqrt{n}) \vee \mathrm{F}$
Law of Implication: 1.2
1.4. $\neg \neg(a \leq \sqrt{n} \vee b \leq \sqrt{n})$
Identity: 1.3
1.5. $a \leq \sqrt{n} \vee b \leq \sqrt{n}$
Double Negation: 1.4

1. $(n=a b) \rightarrow(a \leq \sqrt{n} \vee b \leq \sqrt{n})$

Translate this formal proof to an English proof. (Hint: notice which of the proof strategies is being used in part of this proof. Our proof strategies each have special, often shorter, English translations.)

Solution:

Suppose that $n=a b$. Suppose for contradiction that $a, b>\sqrt{n}$. It follows that $a b>\sqrt{n} \sqrt{n}=n$. We cannot have both $a=n$ and $a b>n$, so this is a contradiction. It follows that a or b is at most \sqrt{n}.

3. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so.
(a) $A=\{1,2,3,2\}$

Solution:

3
(b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$

Solution:

$$
\begin{aligned}
B & =\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\} \\
& =\{\{ \},\{\{ \}\},\{\{ \}\},\{\{ \}\}, \ldots\} \\
& =\{\varnothing,\{\varnothing\}\}
\end{aligned}
$$

So, there are two elements in B.
(c) $C=A \times(B \cup\{7\})$

Solution:

$C=\{1,2,3\} \times\{\varnothing,\{\varnothing\}, 7\}=\{(a, b) \mid a \in\{1,2,3\}, b \in\{\varnothing,\{\varnothing\}, 7\}\}$. It follows that there are $3 \times 3=9$ elements in C.
(d) $D=\varnothing$

Solution:

0 .
(e) $E=\{\varnothing\}$

Solution:

1.

(f) $F=\mathcal{P}(\{\varnothing\})$

Solution:

$2^{1}=2$. The elements are $F=\{\varnothing,\{\varnothing\}\}$.

4. Game, Set, Match

Let A, B, and C be arbitrary sets. Consider the claim that $A \backslash B \subseteq A \cup C$.
(a) Write a formal proof of the claim.

Solution:

1. Let x be an arbitrary object.
2.1. $x \in A \backslash B$

Assumption
2.2. $(x \in A) \wedge \neg(x \in B) \quad$ Defn of " \backslash ": 2.1
2.3. $x \in A$

Elim $\wedge: 2.2$
2.4. $(x \in A) \vee(x \in C) \quad$ Intro $\vee: 2.3$
2.5. $x \in A \cup C \quad$ Defn of $\cup: 2.4$
2. $(x \in A \backslash B) \rightarrow(x \in A \cup C) \quad$ Direct Proof
3. $\forall x((x \in A \backslash B) \rightarrow(x \in A \cup C)) \quad$ Intro $\forall: 1,2$
4. $A \backslash B \subseteq A \cup C$

Defn of \subseteq : 3
(b) Translate your formal proof to an English proof.

Solution:

Let x be an arbitrary object. Suppose that $x \in A \backslash B$. By definition, this means that $x \in A$ and $x \notin B$.
Since $x \in A$, we have $x \in A \cup C$ by the definition of \cup. Since x was arbitrary, this shows $A \backslash B \subseteq A \cup C$.

5. Bump, Set, Spike

Prove each of the following set identities. For each, give an English proof, but feel free to use a chain of equivalences as part of that proof (as in the "meta-theorem" from lecture), and let \mathcal{U} denote the universe.
(a) For any sets A, B, we have $A \cap \bar{B}=A \backslash B$.

Solution:

Let A and B be arbitrary sets. Let x be an arbitrary object. Then, we can see that

$$
\begin{aligned}
x \in A \cap \bar{B} & \equiv x \in A \wedge x \in \bar{B} & & \text { Defn of } \cap \\
& \equiv x \in A \wedge x \notin B & & \text { Defn of : } \\
& \equiv x \in A \backslash B & & \text { Defn of "\" }
\end{aligned}
$$

Thus, we have $x \in A \cap \bar{B} \leftrightarrow x \in A \backslash B$. Since x was arbitrary, this shows that $A \cap \bar{B}=A \backslash B$. Since A and B were arbitrary, the claim follows.
(b) For any set A, we have $\overline{\bar{A}}=A$.

Solution:

Let A be an arbitrary set. Let x be an arbitrary object. Then, we can see that

$$
\begin{aligned}
x \in \overline{\bar{A}} & \equiv \neg(x \in \bar{A}) & & \text { Defn of }- \\
& \equiv \neg(\neg(x \in A)) & & \text { Defn of } \overline{ } \\
& \equiv x \in A & & \text { Double Negation }
\end{aligned}
$$

Thus, we have $x \in \overline{\bar{A}} \leftrightarrow x \in A$. Since x was arbitrary, this shows that $\overline{\bar{A}}=A$. Since A was arbitrary, the claim follows.
(c) For any sets A and B, we have $(A \oplus B) \oplus B=A$.

Solution:

Let A and B be arbitrary sets. Let x be an arbitrary object. Then, we can see that

$$
\begin{aligned}
x \in & (A \oplus B) \oplus B & & \\
& \equiv(x \in A \oplus B) \oplus(x \in B) & & \text { Defn of } \oplus(\text { sets }) \\
& \equiv((x \in A) \oplus(x \in B)) \oplus(x \in B) & & \text { Defn of } \oplus \text { (sets) } \\
& \equiv(x \in A) \oplus((x \in B) \oplus(x \in B)) & & \text { Associativity } \\
& \equiv(x \in A) \oplus(((x \in B) \wedge \neg(x \in B)) \vee(\neg(x \in B) \wedge(x \in B))) & & \text { Defn of } \oplus(\text { logic }) \\
& \equiv(x \in A) \oplus(\mathrm{F} \vee(\neg(x \in B) \wedge(x \in B))) & & \text { Negation } \\
& \equiv(x \in A) \oplus(\mathrm{F} \vee \mathrm{~F}) & & \text { Negation } \\
& \equiv(x \in A) \oplus \mathrm{F} & & \text { Idempotence } \\
& \equiv((x \in A) \wedge \neg \mathrm{F}) \vee(\neg(x \in A) \wedge \mathrm{F}) & & \text { Defn of } \oplus(\text { logic }) \\
& \equiv((x \in A) \wedge \neg \mathrm{F}) \vee \mathrm{F} & & \text { Domination } \\
& \equiv(x \in A) \wedge \neg \mathrm{F} & & \text { Identity } \\
& \equiv(x \in A) \wedge \mathrm{T} & & \text { Defn of } \neg \\
& \equiv x \in A & & \text { Identity }
\end{aligned}
$$

Thus, we have $x \in(A \oplus B) \oplus B \leftrightarrow x \in A$. Since x was arbitrary, this shows that $(A \oplus B) \oplus B=A$. Since A and B were arbitrary, the claim follows.

