CSE 311: Foundations of Computing |
Section 4: English Proofs and Sets Solutions

1. Odds and Ends

Here is a formal proof that, for any even integer, there is an odd integer greater than it.

1. Let x be an arbitrary integer

2.1. Even(z) Assumption
2.2, dn(zx=2n) Defn of Even: 2.1
23. z=2k Elim 3: 2.2
9.4, Lety=2k+1
25. In(y=2n+1) Intro 3: 2.4
2.6. Odd(y) Defn of Odd: 2.5
2.7. 2k+1>2k Prop of "+"
2.8. y>2k Prop of "=": 2.7, 2.4
29. y>=x Prop of "=": 2.8, 2.3
2.10. Odd(y) A (y > =) Intro A: 2.6, 2.9
2.11. 3z (0dd(2) A (z > z)) Intro 3: 2.10
Even(z) — 32 (0Odd(z) A (2 > x)) Direct Proof
Vz (Even(z) — 32 (0dd(z) A (2 > x))) Intro V: 1, 2

Translate this formal proof to an English proof.

Solution:

Let « be an arbitrary integer. Suppose that x is even. By the definition of even, we know that x = 2k for some
integer k. Now, we define y to be the integer 2k 4+ 1, which is odd by the definition of odd. We know that
2k + 1 > 2k regardless of the value of k, so we can see that y is both odd and satisfies y > x. Since x was
arbitrary, we have shown that every even integer has an odd integer greater than it.



2. Primality Checking
When checking if a number n is prime by brute force, it is only necessary to check possible factors up to \/n.

Specifically, we can show the following. Let n, a, and b be positive integers. Here is a proof that, if n = ab,
then either a or b is at most \/n.

1.1. n=ab Assumption
1.21 =(a<+/nVb<y/n) Assumption
1.22 (a>+/n)A(b>+/n) De Morgan: 1.2.1
123 a>+n Elim A: 1.2.2
1.2.4 b>+/n Elim A: 1.2.2

125 ab>nyn=n Prop of ">": 1.2.3, 1.2.4

Algebra
1.2.6 (ab=n)A(ab>n) Intro A: 1.1,1.25
1.2.7 F Prop of ">", 1.2.6
1.2. =(a<v/nVvb<+n)—F Direct Proof
1.3. —=(a<vnVvb<yn)VF Law of Implication: 1.2
1.4. —=(a<vVnVb<y/n) Identity: 1.3
1.5. a<+v/nVvb<yn Double Negation: 1.4
1. (n=ab)— (a<+v/nVb<+/n) Direct Proof

Translate this formal proof to an English proof. (Hint: notice which of the proof strategies is being used in part
of this proof. Our proof strategies each have special, often shorter, English translations.)

Solution:

Suppose that n = ab. Suppose for contradiction that a,b > \/n. It follows that ab > /ny/n = n. We cannot
have both @ = n and ab > n, so this is a contradiction. It follows that a or b is at most y/n.

3. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so.
(a) A={1,2,3,2}

Solution:
3

(b) B={{}, {{ {508 {00 )

Solution:

B={{} {1 {08 {08 3
= {0 O O
= {2, {9}}

So, there are two elements in B.

(c) C=Ax (BUITY



Solution:

C={1,23} x{@,{2},7} ={(a,b) | a € {1,2,3},b € {@,{2},7}}. It follows that there are 3 x3 =9
elements in C.

(d) D=g
Solution:
0.

(e) E={2}
Solution:
1.

(f) FF=P{2})

Solution:
2! = 2. The elements are F = {@, {@}}.

4. Game, Set, Match
Let A, B, and C be arbitrary sets. Consider the claim that A\ BC AUC.
(a) Write a formal proof of the claim.

Solution:

1. Let x be an arbitrary object.

21. z€ A\B Assumption

22. (ze€A)AN—(x € B) Defnof “\": 2.1

23. ze€A Elim A: 2.2

24. (x€A)Vv(xel) IntroVv: 23

25. z€AuC Defn of U: 2.4

(xe A\B) = (x € AUCQC) Direct Proof
Ve ((zr € A\ B) = (x € AUC)) Intro V: 1, 2
A\BCAUC Defn of C: 3

(b) Translate your formal proof to an English proof.

Solution:

Let = be an arbitrary object. Suppose that x € A\ B. By definition, this means that z € A and = ¢ B.
Since z € A, we have x € AUC by the definition of U. Since = was arbitrary, this shows A\ B C AUC.

5. Bump, Set, Spike
Prove each of the following set identities. For each, give an English proof, but feel free to use a chain of
equivalences as part of that proof (as in the "meta-theorem" from lecture), and let U denote the universe.

(a) For any sets A, B, we have ANB = A\ B .



Solution:

Let A and B be arbitrary sets. Let & be an arbitrary object. Then, we can see that

rcANB=xc ANz EB Defn of N
=rxecANx ¢ B Defn of *
=xec€A\B Defn of “\”

Thus, we have z € AN B «» x € A\ B. Since z was arbitrary, this shows that AN B = A\ B. Since A
and B were arbitrary, the claim follows.

For any set A, we have A=A

Solution:

Let A be an arbitrary set. Let = be an arbitrary object. Then, we can see that

xejz—'(xeﬂ) Defn of ~
=(—(z € A)) Defn of ~
=zxecA Double Negation

Thus, we have © € A <> 2 € A. Since = was arbitrary, this shows that A= A. Since A was arbitrary,
the claim follows.

For any sets A and B, we have (A® B) & B = A.

Solution:

Let A and B be arbitrary sets. Let x be an arbitrary object. Then, we can see that

c(AeB)eB
=(rxcAdB)® (v e B) Defn of @ (sets)
=((x€A)@(xeB))d(reB) Defn of & (sets)
=xcA)@(reB)®(reB)) Associativity
=(xcA)@((zreB)AN~(xeB))V(~(xeB)A(xeB))) Defn of & (logic)
=(xcA)@(FV(-(reB)A(xe€B))) Negation
=(xeAd)d(FVF) Negation
=(xc€ADF |dempotence
=((x e A)AN=F)V (=(x € A) AF) Defn of & (logic)
=((xe A)N-F)VF Domination
=(re A AN-F Identity
=(xeANT Defn of —
=xeAd Identity

Thus, we have z € (A@ B) @ B <+ x € A. Since = was arbitrary, this shows that (A& B) @& B = A.
Since A and B were arbitrary, the claim follows.



