CSE 311: Foundations of Computing I

Section 4: English Proofs and Sets Solutions

1. Odds and Ends

Here is a formal proof that, for any even integer, there is an odd integer greater than it.

1. Let x be an arbitrary integer

	2.1.	Even(x)	Assumption	
	2.2.	$\exists n (x = 2n)$	Defn of Even: 2.1	
	2.3.	x = 2k	Elim ∃: 2.2	
	2.4.	Let $y = 2k + 1$		
	2.5.	$\exists n (y = 2n + 1)$	Intro ∃: 2.4	
	2.6.	Odd(y)	Defn of Odd: 2.5	
	2.7.	2k + 1 > 2k	Prop of "+"	
	2.8.	y > 2k	Prop of "=": 2.7, 2.4	
	2.9.	y > x	Prop of "=": 2.8, 2.3	
	2.10.	$Odd(y) \land (y > x)$	Intro ∧: 2.6, 2.9	
	2.11.	$\exists z \left(Odd(z) \land (z > x) \right)$	Intro ∃: 2.10	
2.	$Even(x) \to \exists z (Odd(z) \land (z > x))$			Direct Proof
3.	$\forall x (Ev$	Intro $\forall: 1, 2$		

Translate this formal proof to an English proof.

Solution:

Let x be an arbitrary integer. Suppose that x is even. By the definition of even, we know that x = 2k for some integer k. Now, we define y to be the integer 2k + 1, which is odd by the definition of odd. We know that 2k + 1 > 2k regardless of the value of k, so we can see that y is both odd and satisfies y > x. Since x was arbitrary, we have shown that every even integer has an odd integer greater than it.

2. Primality Checking

When checking if a number n is prime by brute force, it is only necessary to check possible factors up to \sqrt{n} .

Specifically, we can show the following. Let n, a, and b be positive integers. Here is a proof that, if n = ab, then either a or b is at most \sqrt{n} .

1.1.	n = ab		Assumption	
	1.2.1 $\neg (a \le \sqrt{n} \lor b \le \sqrt{n})$	Assumption		
	1.2.2 $(a > \sqrt{n}) \land (b > \sqrt{n})$	De Morgan: 1.2.1		
	1.2.3 $a > \sqrt{n}$	Elim ∧: 1.2.2		
	1.2.4 $b > \sqrt{n}$	Elim \land : 1.2.2		
	1.2.5 $ab > \sqrt{n}\sqrt{n} = n$	Prop of ">": 1.2.3, 1.2.4 Algebra		
	$1.2.6 (ab=n) \land (ab>n)$	Intro \wedge : 1.1, 1.2.5		
	1.2.7 F	Prop of ">", 1.2.6		
1.2.	$\neg (a \leq \sqrt{n} \lor b \leq \sqrt{n}) \to F$		Direct Proof	
1.3.	$\neg \neg (a \leq \sqrt{n} \lor b \leq \sqrt{n}) \lor F$		Law of Implication: 1.2	
1.4.	$\neg\neg(a \leq \sqrt{n} \lor b \leq \sqrt{n})$		Identity: 1.3	
1.5.	$a \leq \sqrt{n} \lor b \leq \sqrt{n}$		Double Negation: 1.4	
(n =	$ab) \to (a \leq \sqrt{n} \lor b \leq \sqrt{n})$			Direct Proof

Translate this formal proof to an English proof. (Hint: notice which of the proof strategies is being used in part of this proof. Our proof strategies each have special, often shorter, English translations.)

Solution:

1.

Suppose that n = ab. Suppose for contradiction that $a, b > \sqrt{n}$. It follows that $ab > \sqrt{n}\sqrt{n} = n$. We cannot have both a = n and ab > n, so this is a contradiction. It follows that a or b is at most \sqrt{n} .

3. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so. (a) $A = \{1, 2, 3, 2\}$

Solution:

3

(b) $B = \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}, \{\{\}, \{\}\}, \dots\}$

Solution:

$$B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\{\}, \{\}\}, \dots\}$$

= \{\}, \\\}, \\\\, \\\, \\\, \\\,
= \\Ø, \\Ø\\}

So, there are two elements in B.

(c) $C = A \times (B \cup \{7\})$

Solution:

 $C = \{1, 2, 3\} \times \{\emptyset, \{\emptyset\}, 7\} = \{(a, b) \mid a \in \{1, 2, 3\}, b \in \{\emptyset, \{\emptyset\}, 7\}\}.$ It follows that there are $3 \times 3 = 9$ elements in C.

(d) $D = \emptyset$

Solution:

0.

(e) $E = \{ \emptyset \}$

Solution:

1.

(f) $F = \mathcal{P}(\{\varnothing\})$

Solution:

 $2^1 = 2$. The elements are $F = \{\emptyset, \{\emptyset\}\}$.

4. Game, Set, Match

Let A, B, and C be arbitrary sets. Consider the claim that $A \setminus B \subseteq A \cup C$.

(a) Write a formal proof of the claim.

Solution:

1. Let x be an arbitrary object.

	2.1.	$x \in A \setminus B$	Assumption	
	2.2.	$(x \in A) \land \neg (x \in B)$	Defn of "\": 2.1	
	2.3.	$x \in A$	Elim \wedge : 2.2	
	2.4.	$(x \in A) \lor (x \in C)$	Intro \lor : 2.3	
	2.5.	$x \in A \cup C$	Defn of \cup : 2.4	
2.	$(x \in A \setminus B) \to (x \in A \cup C)$			Direct Proof
3.	$\forall x \left(\left(x \in A \setminus B \right) \to \left(x \in A \cup C \right) \right)$			Intro ∀: 1, 2
4.	$A \setminus I$	$B \subseteq A \cup C$		Defn of $\subseteq: 3$

(b) Translate your formal proof to an English proof.

Solution:

Let x be an arbitrary object. Suppose that $x \in A \setminus B$. By definition, this means that $x \in A$ and $x \notin B$. Since $x \in A$, we have $x \in A \cup C$ by the definition of \cup . Since x was arbitrary, this shows $A \setminus B \subseteq A \cup C$.

5. Bump, Set, Spike

Prove each of the following set identities. For each, give an English proof, but feel free to use a chain of equivalences as part of that proof (as in the "meta-theorem" from lecture), and let \mathcal{U} denote the universe.

(a) For any sets A,B, we have $A\cap \overline{B}=A\setminus B$.

Solution:

Let A and B be arbitrary sets. Let x be an arbitrary object. Then, we can see that

$$\begin{array}{ll} x \in A \cap \overline{B} \equiv x \in A \land x \in \overline{B} & \text{Defn of } \cap \\ \equiv x \in A \land x \notin B & \text{Defn of } \overline{\cdot} \\ \equiv x \in A \setminus B & \text{Defn of } " \rangle \end{array}$$

Thus, we have $x \in A \cap \overline{B} \leftrightarrow x \in A \setminus B$. Since x was arbitrary, this shows that $A \cap \overline{B} = A \setminus B$. Since A and B were arbitrary, the claim follows.

(b) For any set A, we have $\overline{\overline{A}} = A$.

Solution:

Let A be an arbitrary set. Let x be an arbitrary object. Then, we can see that

$$\begin{array}{ll} x \in \overline{A} \equiv \neg (x \in \overline{A}) & \text{Defn of } \overline{\cdot} \\ \equiv \neg (\neg (x \in A)) & \text{Defn of } \overline{\cdot} \\ \equiv x \in A & \text{Double Negation} \end{array}$$

Thus, we have $x \in \overline{\overline{A}} \leftrightarrow x \in A$. Since x was arbitrary, this shows that $\overline{\overline{A}} = A$. Since A was arbitrary, the claim follows.

(c) For any sets A and B, we have $(A \oplus B) \oplus B = A$.

Solution:

Let A and B be arbitrary sets. Let x be an arbitrary object. Then, we can see that

$$\begin{aligned} x \in (A \oplus B) \oplus B \\ &\equiv (x \in A \oplus B) \oplus (x \in B) \\ &\equiv ((x \in A) \oplus (x \in B)) \oplus (x \in B) \\ &\equiv (x \in A) \oplus ((x \in B) \oplus (x \in B)) \\ &\equiv (x \in A) \oplus ((x \in B) \wedge \neg (x \in B)) \vee (\neg (x \in B) \wedge (x \in B))) \\ &\equiv (x \in A) \oplus (\mathsf{F} \vee (\neg (x \in B) \wedge (x \in B))) \\ &\equiv (x \in A) \oplus (\mathsf{F} \vee (\neg (x \in B) \wedge (x \in B))) \\ &\equiv (x \in A) \oplus (\mathsf{F} \vee \mathsf{F}) \\ &\equiv (x \in A) \oplus \mathsf{F} \\ &\equiv ((x \in A) \wedge \neg \mathsf{F}) \vee (\neg (x \in A) \wedge \mathsf{F}) \\ &\equiv ((x \in A) \wedge \neg \mathsf{F}) \vee \mathsf{F} \\ &\equiv (x \in A) \wedge \neg \mathsf{F} \\ &= (x \in A) \land \neg \mathsf{F}$$

Thus, we have $x \in (A \oplus B) \oplus B \leftrightarrow x \in A$. Since x was arbitrary, this shows that $(A \oplus B) \oplus B = A$. Since A and B were arbitrary, the claim follows.