CSE 311: Foundations of Computing I

Section 2: Equivalences and Predicate Logic Solutions

1. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.

(a) $p \leftrightarrow q$ $(p \land q) \lor (\neg p \land \neg q)$

Solution:

(b)
$$\neg p \rightarrow (q \rightarrow r)$$
 $q \rightarrow (p \lor r)$

Solution:

$$\begin{array}{ll} \neg p \rightarrow (q \rightarrow r) & \equiv & \neg \neg p \lor (q \rightarrow r) & [\text{Law of Implication}] \\ & \equiv & p \lor (q \rightarrow r) & [\text{Double Negation}] \\ & \equiv & p \lor (\neg q \lor r) & [\text{Law of Implication}] \\ & \equiv & (p \lor \neg q) \lor r & [\text{Associativity}] \\ & \equiv & (\neg q \lor p) \lor r & [\text{Commutativity}] \\ & \equiv & \neg q \lor (p \lor r) & [\text{Associativity}] \\ & \equiv & q \rightarrow (p \lor r) & [\text{Law of Implication}] \end{array}$$

2. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.

(a) $p \to q$ $q \to p$

Solution:

A: They differ when p = T and q = F.

B: They differ when p = T and q = F since $p \rightarrow q = T \rightarrow F \equiv F$ but $q \rightarrow p \equiv F \rightarrow T \equiv T$.

(b) $p \to (q \land r)$ $(p \to q) \land r$

Solution:

A: They differ when p = r = F since $p \to (q \land r) = F \to (q \land F) \equiv T$ but $(p \to q) \land r = (F \to q) \land F \equiv F$. **B**: They differ when p = r = F since $p \to (q \land r) = F \to (q \land F) \equiv F \to F \equiv T$ and on the other hand $(p \to q) \land r = (F \to q) \land F \equiv T \land F \equiv F$.

3. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.

(a)
$$\neg p \lor (\neg q \lor (p \land q))$$

Solution:

A: First, we replace \neg , \lor , and \land . This gives us p' + q' + pq. (Note that the parentheses are not necessary in boolean algebra since the operations are associative.) Next, we can use DeMorgan's laws to get the slightly simpler (pq)' + pq. Then, we can use commutativity to get pq + (pq)' and complementarity to get 1. (Note that this is another way of saying the formula is a tautology.)

B: Replacing \neg , \lor , and \land gives us p' + q' + pq. (Note that parentheses are not necessary in boolean algebra since the operations are associative.) Then, we can simplify as follows:

p' + q' + pq = (pq)' + pq	De Morgan
= pq + (pq)'	Commutativity
=1	Complementarity

Since 1 in boolean algebra means T, this shows that the original expression is a tautology.

(b)
$$\neg (p \lor (q \land p))$$

Solution:

A:

$$\begin{array}{ll} (p+qp)' = p'(qp)' & \mbox{De Morgan} \\ = p'(q'+p') & \mbox{De Morgan (on second term)} \\ = p'(p'+q') & \mbox{Commutativity} \\ = p' & \mbox{Absorption} \end{array}$$

B: Translating to Boolean algebra, we get (p+qp)'. Then, we can simplify as follows:

(p+qp)' = p'(qp)'	De Morgan
= p'(q'+p')	De Morgan
= p'(p'+q')	Commutativity
= p'	Absorption

4. Canonical Forms

Consider the boolean functions F(A, B, C) and G(A, B, C) specified by the following truth table:

A	B	C	F(A, B, C)	G(A, B, C)
1	1	1	1	0
1	1	0	1	1
1	0	1	0	0
1	0	0	0	0
0	1	1	1	1
0	1	0	1	0
0	0	1	0	1
0	0	0	1	0

(a) Write the DNF and CNF expressions for F(A, B, C).

Solution:

DNF: ABC + ABC' + A'BC + A'BC' + A'B'C'**CNF:** (A' + B + C')(A' + B + C)(A + B + C')

(b) Write the DNF and CNF expressions for G(A, B, C).

Solution:

DNF: ABC' + A'BC + A'B'C**CNF:** (A' + B' + C')(A' + B + C')(A' + B + C)(A + B' + C)(A + B + C)