CSE 311: Foundations of Computing I

Section 2: Equivalences and Predicate Logic Solutions

1. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.
(a) $p \leftrightarrow q$

$$
(p \wedge q) \vee(\neg p \wedge \neg q)
$$

Solution:

$$
\begin{aligned}
& p \leftrightarrow q \quad \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(\neg q \vee p) \\
& \equiv((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) \\
& \equiv(\neg q \wedge(\neg p \vee q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg q \wedge \neg p) \vee(\neg q \wedge q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg p \wedge \neg q) \vee(\neg q \wedge q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg p \wedge \neg q) \vee(q \wedge \neg q)) \vee((\neg p \vee q) \wedge p) \\
& \equiv((\neg p \wedge \neg q) \vee(q \wedge \neg q)) \vee(p \wedge(\neg p \vee q)) \\
& \equiv((\neg p \wedge \neg q) \vee(q \wedge \neg q)) \vee((p \wedge \neg p) \vee(p \wedge q)) \\
& \equiv((\neg p \wedge \neg q) \vee F) \vee((p \wedge \neg p) \vee(p \wedge q)) \\
& \equiv((\neg p \wedge \neg q) \vee F) \vee(F \vee(p \wedge q)) \\
& \equiv(\neg p \wedge \neg q) \vee(F \vee(p \wedge q)) \\
& \equiv(\neg p \wedge \neg q) \vee((p \wedge q) \vee F) \\
& \equiv(\neg p \wedge \neg q) \vee(p \wedge q) \\
& \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \text { [iff is two implications] } \\
& \text { [Law of Implication] } \\
& \text { [Law of Implication] } \\
& \text { [Distributivity] } \\
& \text { [Commutativity] } \\
& \text { [Distributivity] } \\
& \text { [Commutativity] } \\
& \text { [Commutativity] } \\
& \text { [Commutativity] } \\
& \text { [Distributivity] } \\
& \text { [Negation] } \\
& \text { [Negation] } \\
& \text { [Identity] } \\
& \text { [Commutativity] } \\
& \text { [Identity] } \\
& \text { [Commutativity] }
\end{aligned}
$$

(b) $\neg p \rightarrow(q \rightarrow r) \quad q \rightarrow(p \vee r)$

Solution:

$$
\begin{array}{lll}
\neg p \rightarrow(q \rightarrow r) & \equiv \neg \neg p \vee(q \rightarrow r) & \\
& \equiv p \vee(q \rightarrow r) & \text { [Daw of Implication] } \\
& \equiv p \vee(\neg q \vee r) & \text { [Law of Implication] } \\
& \equiv(p \vee \neg q) \vee r & \text { [Associativity] } \\
& \equiv(\neg q \vee p) \vee r & \text { [Commutativity] } \\
& \equiv \neg q \vee(p \vee r) & \\
& \equiv q \rightarrow(p \vee s o c i a t i v i t y] \\
& & \text { [Law of Implication] }
\end{array}
$$

2. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.
(a) $p \rightarrow q$

$$
q \rightarrow p
$$

Solution:

A: They differ when $p=\mathrm{T}$ and $q=\mathrm{F}$.
B: They differ when $p=\mathrm{T}$ and $q=\mathrm{F}$ since $p \rightarrow q=\mathrm{T} \rightarrow \mathrm{F} \equiv \mathrm{F}$ but $q \rightarrow p \equiv \mathrm{~F} \rightarrow \mathrm{~T} \equiv \mathrm{~T}$.
(b) $p \rightarrow(q \wedge r) \quad(p \rightarrow q) \wedge r$

Solution:

A: They differ when $p=r=\mathrm{F}$ since $p \rightarrow(q \wedge r)=\mathrm{F} \rightarrow(q \wedge \mathrm{~F}) \equiv \mathrm{T}$ but $(p \rightarrow q) \wedge r=(\mathrm{F} \rightarrow q) \wedge \mathrm{F} \equiv \mathrm{F}$.
B: They differ when $p=r=\mathrm{F}$ since $p \rightarrow(q \wedge r)=\mathrm{F} \rightarrow(q \wedge \mathrm{~F}) \equiv \mathrm{F} \rightarrow \mathrm{F} \equiv \mathrm{T}$ and on the other hand $(p \rightarrow q) \wedge r=(\mathrm{F} \rightarrow q) \wedge \mathrm{F} \equiv \mathrm{T} \wedge \mathrm{F} \equiv \mathrm{F}$.

3. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.
(a) $\neg p \vee(\neg q \vee(p \wedge q))$

Solution:

A: First, we replace \neg, \vee, and \wedge. This gives us $p^{\prime}+q^{\prime}+p q$. (Note that the parentheses are not necessary in boolean algebra since the operations are associative.) Next, we can use DeMorgan's laws to get the slightly simpler $(p q)^{\prime}+p q$. Then, we can use commutativity to get $p q+(p q)^{\prime}$ and complementarity to get 1. (Note that this is another way of saying the formula is a tautology.)

B: Replacing \neg, \vee, and \wedge gives us $p^{\prime}+q^{\prime}+p q$. (Note that parentheses are not necessary in boolean algebra since the operations are associative.) Then, we can simplify as follows:

$$
\begin{array}{rlr}
p^{\prime}+q^{\prime}+p q & =(p q)^{\prime}+p q & \text { De Morgan } \\
& =p q+(p q)^{\prime} & \text { Commutativity } \\
& =1 & \text { Complementarity }
\end{array}
$$

Since 1 in boolean algebra means T , this shows that the original expression is a tautology.
(b) $\neg(p \vee(q \wedge p))$

Solution:

A:

$$
\begin{array}{rlr}
(p+q p)^{\prime} & =p^{\prime}(q p)^{\prime} & \text { De Morgan } \\
& =p^{\prime}\left(q^{\prime}+p^{\prime}\right) & \text { De Morgan (on second term) } \\
& =p^{\prime}\left(p^{\prime}+q^{\prime}\right) & \text { Commutativity } \\
& =p^{\prime} & \text { Absorption }
\end{array}
$$

B: Translating to Boolean algebra, we get $(p+q p)^{\prime}$. Then, we can simplify as follows:

$$
\begin{array}{rlr}
(p+q p)^{\prime} & =p^{\prime}(q p)^{\prime} & \text { De Morgan } \\
& =p^{\prime}\left(q^{\prime}+p^{\prime}\right) & \text { De Morgan } \\
& =p^{\prime}\left(p^{\prime}+q^{\prime}\right) & \text { Commutativity } \\
& =p^{\prime} & \text { Absorption }
\end{array}
$$

4. Canonical Forms

Consider the boolean functions $F(A, B, C)$ and $G(A, B, C)$ specified by the following truth table:

A	B	C	$F(A, B, C)$	$G(A, B, C)$
1	1	1	1	0
1	1	0	1	1
1	0	1	0	0
1	0	0	0	0
0	1	1	1	1
0	1	0	1	0
0	0	1	0	1
0	0	0	1	0

(a) Write the DNF and CNF expressions for $F(A, B, C)$.

Solution:

DNF: $A B C+A B C^{\prime}+A^{\prime} B C+A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C^{\prime}$
CNF: $\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B+C\right)\left(A+B+C^{\prime}\right)$
(b) Write the DNF and CNF expressions for $G(A, B, C)$.

Solution:

DNF: $A B C^{\prime}+A^{\prime} B C+A^{\prime} B^{\prime} C$
CNF: $\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B+C\right)\left(A+B^{\prime}+C\right)(A+B+C)$

