CSE 311: Foundations of Computing

Lecture 25: Languages vs Representations: Limitations of Finite Automata and Regular Expressions

Last time: NFA to DFA

Exponential Blow-up in Simulating Nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - n-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary "Is the nth char from the end a 1?"

The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

The story so far...

RES ⊆ CFGs

III

DFAS ≡ NFAS

Last time: DFAs ≡ NFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact but you don't need to know and we won't ask you anything about the construction for the "only if" direction from DFA/NFA to regular expression.

Languages represented by DFA, NFAs, or regular expressions are called **Regular Languages**

Application of FSMs: Pattern matching

Given

- a string s of n characters
- a pattern p of m characters
- usually $m \ll n$

Find

all occurrences of the pattern p in the string s

Obvious algorithm:

- try to see if p matches at each of the positions in S stop at a failed match and try matching at the next position: O(mn) running time.

Application of FSMs: Pattern Matching

- With DFAs can do this in O(m+n) time.
- See Extra Credit problem on HW8 for some ideas of how to get to O(m² + n).
- Even more general idea in practice: implemented in regular expression pattern matchers like grep:
 - Convert regular expression pattern to an NFA
 - Start building the equivalent DFA from the NFA using the subset construction but do this "on the fly": only add arcs that are actually followed by the input text

The story so far...

RES ⊆ CFGs

III

DFAS ≡ NFAS

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

Languages and Representations!

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

An Interesting Infinite Regular Language

L = $\{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

L is infinite.

0, 00, 000, ...

L is regular. How could this be?

That seems to require comparing counts...

- easy for a CFG (see <u>section</u>: strings with equal # of 0s and 1s)
- but seems hard for DFAs!

An Interesting Infinite Regular Language

L = $\{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

L is infinite.

0, 00, 000, ...

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!

Languages and Representations!

The language of "Binary Palindromes" is Context-Free

$$S \rightarrow \epsilon$$
 | 0 | 1 | 0S0 | 1S1

Is the language of "Binary Palindromes" Regular?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the "first part" of the input in order to check the second part against it

...but there are an infinite # of possible first parts and we only have finitely many states.

Proof idea: any machine that does not remember the entire first half will be wrong for some inputs

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- Our goal is to show that M must be "confused"...
 we want to show that it "does the wrong thing".

How can a DFA be "wrong"?

when it accepts or rejects a string it shouldn't.

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- Our goal is to show that M must be "confused"...
 we want to show that it "does the wrong thing" accepts or rejects a string it shouldn't.

"M recognizes B" AND "M doesn't recognize B", which is a contradiction

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of states which means if we have infinitely many strings, two of them must collide!

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

We choose an **INFINITE** set **S** of "partial strings" (which we intend to complete later).

1_____ 01____ 001____ 00001____

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

We choose an **INFINITE** set **S** of "partial strings" (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an "accept" completion that the two strings DO NOT SHARE.

1_____ 01____ 001____ 00001____

......

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Key Idea 2: Our machine has a finite number of states which means if we have infinitely many strings, two of them must collide!

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}$.

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we have to take the ones we're given!

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0° to both strings.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $O^a1 \in S$ and $O^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0° to both strings.

Then, since 0°1 and 0°1 end in the same state, 0°10° and 0°10° also end in the same state, call it q.

But then M makes a mistake: q needs to be an accept state since $0^a10^a \in B$, but M would accept $0^b10^a \notin B$ which is an error.

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $O^a1 \in S$ and $O^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0° to both strings.

Then, since 0^a1 and 0^b1 end in the same state, 0^a10^a and 0^b10^a also end in the same state, call it q. But then M must make a mistake: q needs to be an accept state since $0^a10^a \in B$, but then M would accept $0^b10^a \notin B$ which is an error.

This is a contradiction since we assumed that M recognizes B. Since M was arbitrary, no DFA recognizes B.

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an **INFINITE** set **S** of "partial strings" (which we intend to complete later). It is imperative that for **every pair** of strings in our set there is an "accept" completion that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion t to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Since M was arbitrary, no DFA recognizes L."

Suppose for contradiction that some DFA, M, recognizes A.

Let S =

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Note that $0^a1^a \in A$, but $0^b1^a \notin A$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $0^a1^a \in A$, state q must be an accept state but then M would incorrectly accept $0^b1^a \notin A$ so M does not recognize A.

Since M was arbitrary, no DFA recognizes A.

Suppose for contradiction that some DFA, M, accepts P.

Let S =

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (^n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some $a \ne b$ that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (^n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \ne b that end in the same state in M.

Consider appending) to both strings.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (^n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \ne b that end in the same state in M.

Consider appending) to both strings.

Note that $(a)^a \in P$, but $(b)^a \notin P$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $(a)^a \in P$, state q must be an accept state but then M would incorrectly accept $(b)^a \notin P$ so M does not recognize P.

Since M was arbitrary, no DFA recognizes P.

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an **INFINITE** set **S** of "partial strings" (which we intend to complete later). It is imperative that for **every pair** of strings in our set there is an "accept" completion that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion t to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Since M was arbitrary, no DFA recognizes L."

Fact: This method is optimal

- Suppose that for a language L, the set S is a *largest* set of "partial strings" with the property that for every pair $s_a \neq s_b \in S$, there is some string t such that one of $s_a t$, $s_b t$ is in L but the other isn't.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

Fact: This method is optimal

- Suppose that for a language L, the set S is a *largest* set of "partial strings" with the property that for every pair $s_a \neq s_b \in S$, there is some string t such that one of $s_a t$, $s_b t$ is in L but the other isn't.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

 we separated exactly those states for which some t would make one accept and another not accept

Fact: This method is optimal

- Suppose that for a language L, the set S is a *largest* set of "partial strings" with the property that for every pair $s_a \neq s_b \in S$, there is some string t such that one of $s_a t$, $s_b t$ is in L but the other isn't.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

BTW: There is another method commonly used to prove languages not regular called the Pumping Lemma that we won't use in this course. Note that it doesn't always work.