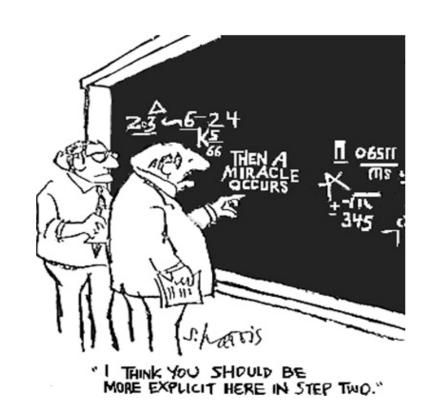
CSE 311: Foundations of Computing

Lecture 23: Finite State Machine Minimization & NFAs

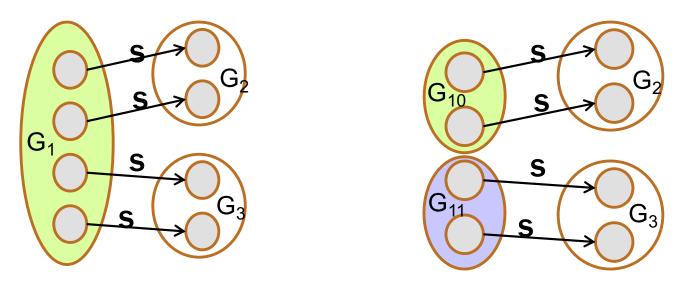


State Minimization

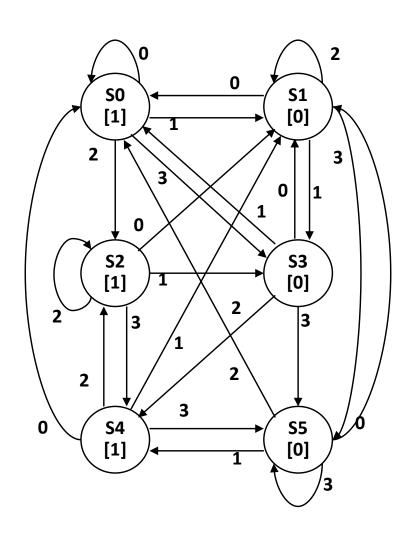
- Many different FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
 - Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State Minimization Algorithm

- 1. Put states into groups based on their outputs (or whether they are final states or not)
- 2. Repeat the following until no change happens
 - a. If there is a symbol s so that not all states in a group G agree on which group s leads to, split G into smaller groups based on which group the states go to on s



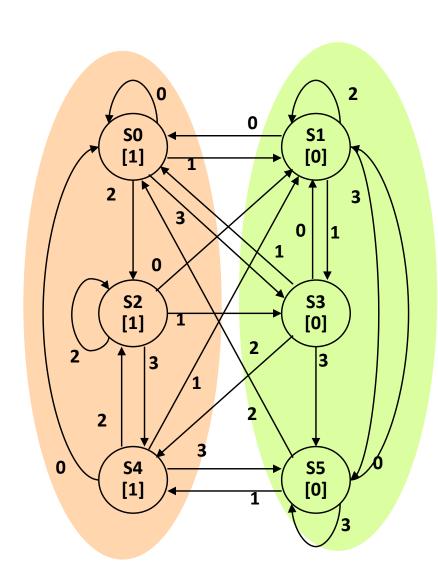
3. Finally, convert groups to states



present	r	next s	output		
state	0	1	2	3	
S0	S0	S1	S2	S 3	1
S1	S0	S 3	S1	S5	0
S2	S1	S 3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S 1	S4	S0	S 5	0

state transition table

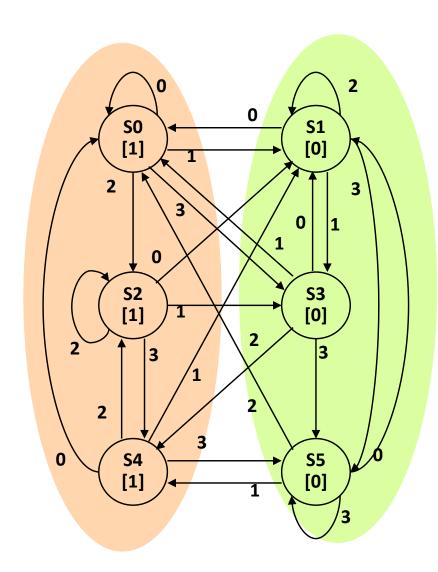
Put states into groups based on their outputs (or whether they are final states or not)



present		nex	output		
state	0	1	2	3	
S0	S0	S 1	S2	S 3	1
S1	S0	S 3	S1	S5	0
S2	S1	S 3	S2	S4	1
S 3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

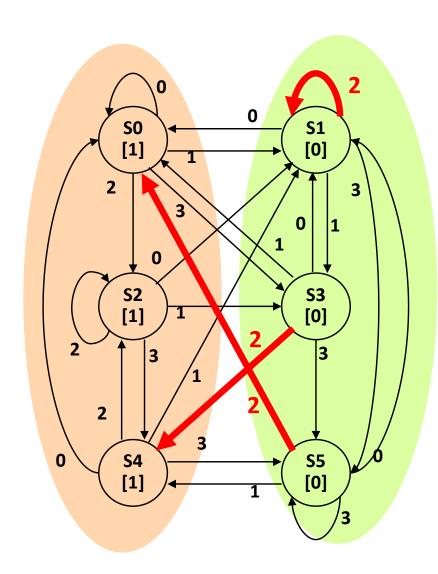
Put states into groups based on their outputs (or whether they are final states or not)



present		nex	output		
state	0	1	2	3	
S0	S0	S 1	S2	S 3	1
S1	S0	S 3	S1	S5	0
S2	S1	S 3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S 1	S4	S0	S5	0

state transition table

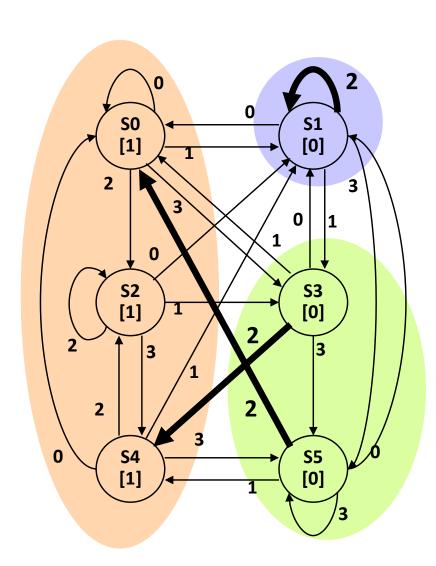
Put states into groups based on their outputs (or whether they are final states or not)



present		nex	output		
state	0	1	2	3	
S0	S0	S 1	S2	S 3	1
S1	S0	S 3	S1	S5	0
S2	S1	S3	S2	S4	1
S 3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S 5	S1	S4	S0	S 5	0

state transition table

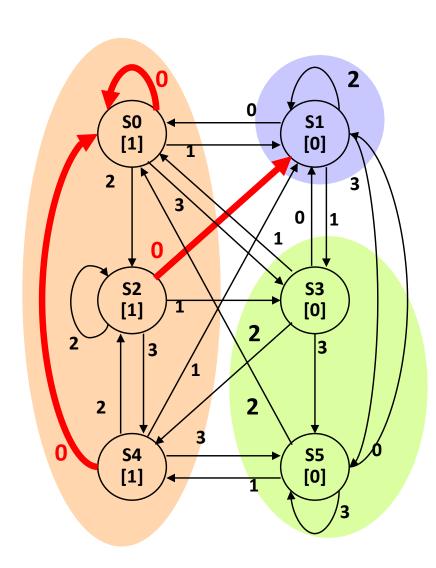
Put states into groups based on their outputs (or whether they are final states or not)



present		nex	output		
state	0	1	2	3	
S0	S0	S 1	S2	S 3	1
S1	S0	S 3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

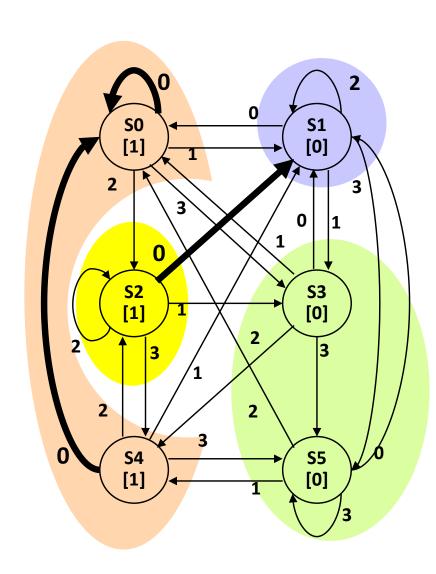
Put states into groups based on their outputs (or whether they are final states or not)



present		nex	output		
state	0	1	2	3	
S0	S0	S 1	S2	S 3	1
S1	S0	S 3	S1	S5	0
S2	S1	S3	S2	S4	1
S 3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S 5	S1	S4	S0	S 5	0

state transition table

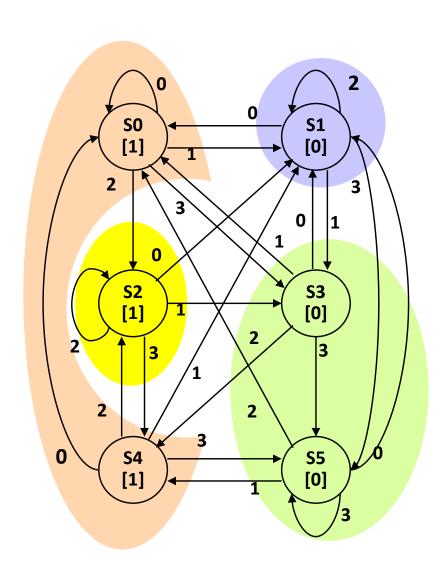
Put states into groups based on their outputs (or whether they are final states or not)



present		nex	output		
state	0	1	2	3	
S0	S0	S 1	S2	S 3	1
S1	S0	S 3	S1	S5	0
S2	S1	S3	S2	S4	1
S 3	S1	S0	S4	S5	0
S4	S0	S1	S2	S 5	1
S 5	S1	S4	S0	S 5	0

state transition table

Put states into groups based on their outputs (or whether they are final states or not)



present		nex	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	SO	S5	0

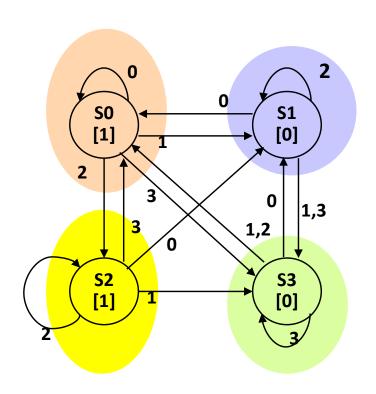
state transition table

Finally convert groups to states:

Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

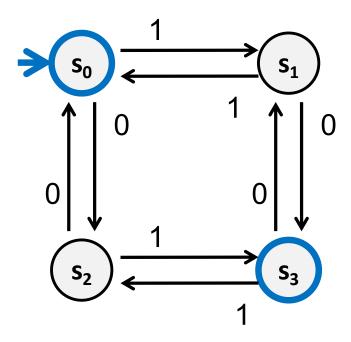
Minimized Machine



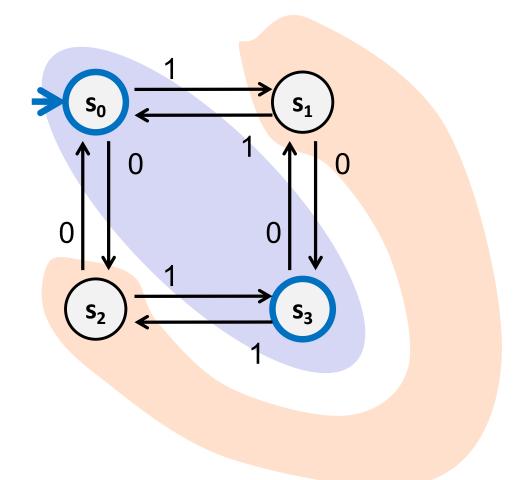
present	Ī	nex	output		
state	0	1	2	3	
S0	SO	S1	S2	S3	1
S1	SO	S3	S1	S3	0
S2	S1	S3	S2	SO	1
S3	S1	SO	SO	S3	0

state transition table

A Simpler Minimization Example



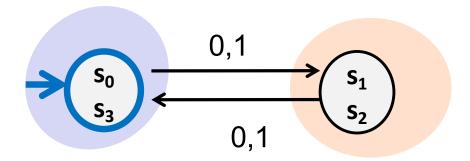
A Simpler Minimization Example



Split states into final/non-final groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA



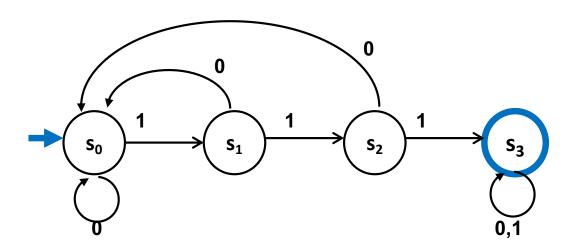
Partial Correctness of Minimization Algorithm

- Prove this claim: after processing input x, if the old machine was in state q, then the new machine is in the state S with $q \in S$
 - True after 0 characters processed
 - If true after k characters processed,
 then it's true after k+1 characters processed:
 - By inductive hypothesis, after k steps, old machine is in state q and new one in state S with $q \in S$
 - By construction, every $r \in S$ is taken to the same state S' on input x_{k+1} , so q is taken to some $q' \in S'$.
 - At end, since every $r \in S$ is accepting or rejecting, new machine gives correct answer.

Another way to look at DFAs

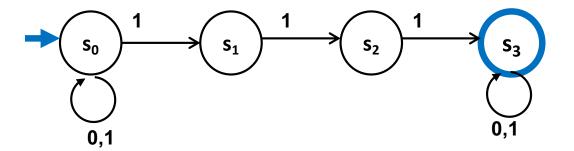
Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

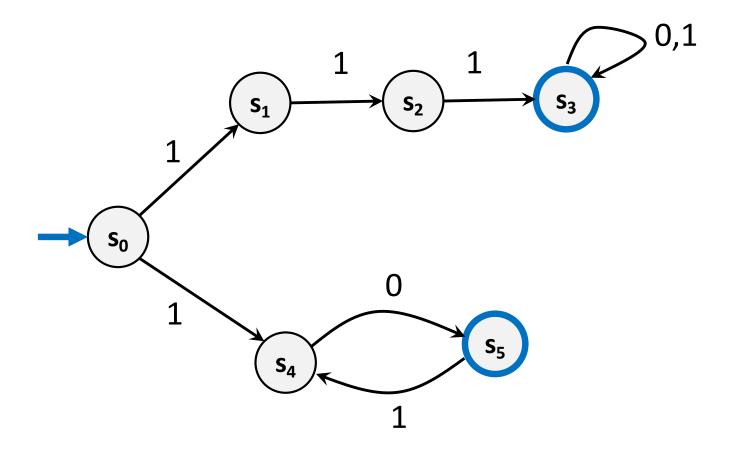


Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if x labels some path from the start state to a final state

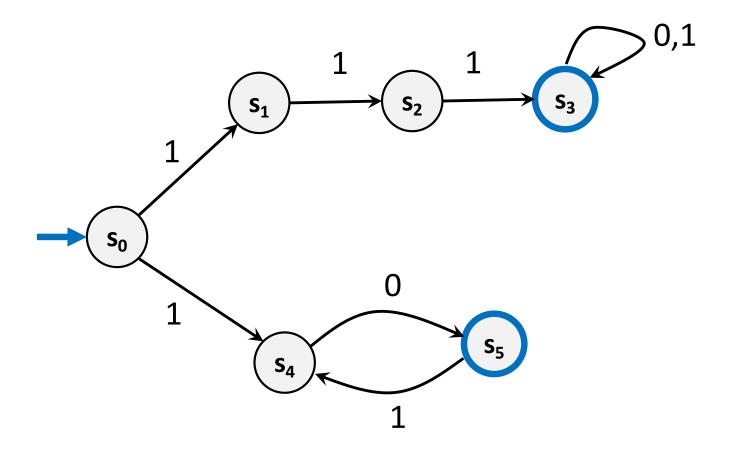


Consider This NFA



What language does this NFA accept?

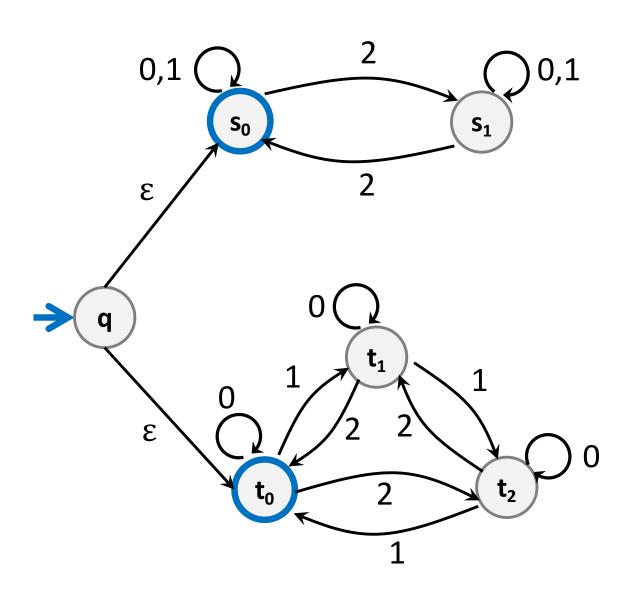
Consider This NFA



What language does this NFA accept?

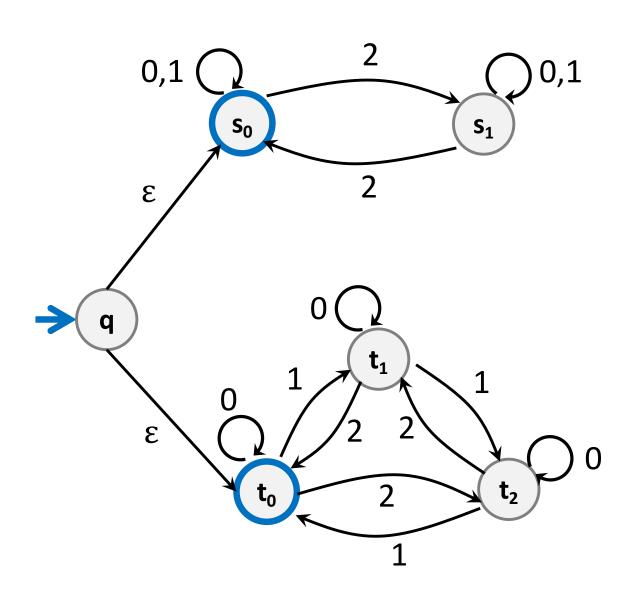
10(10)* U 111 (0 U 1)*

NFA ε-moves



NFA ε-moves

Strings over $\{0,1,2\}$ w/even # of 2's OR sum to 0 mod 3



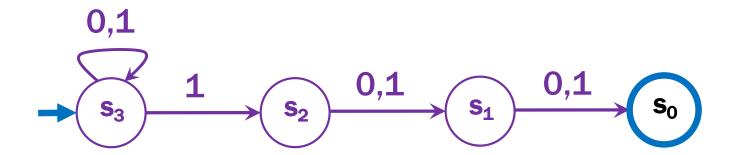
Three ways of thinking about NFAs

 Outside observer: Is there a path labeled by x from the start state to some final state?

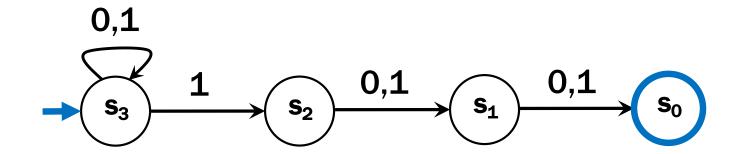
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

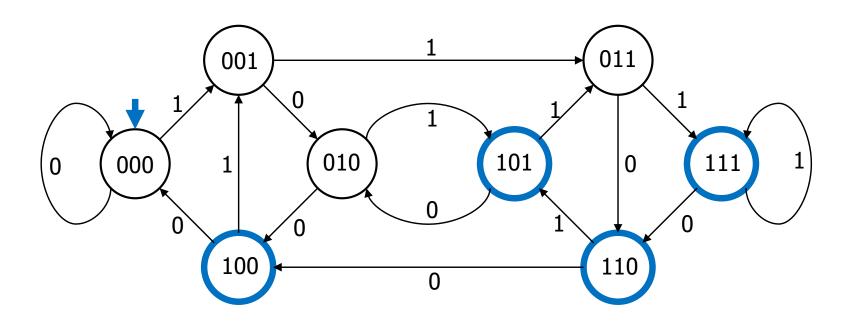
NFA for set of binary strings with a 1 in the 3rd position from the end

NFA for set of binary strings with a 1 in the 3rd position from the end

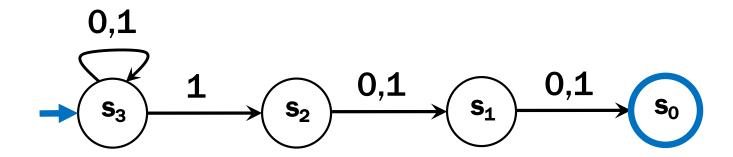


Compare with the smallest DFA

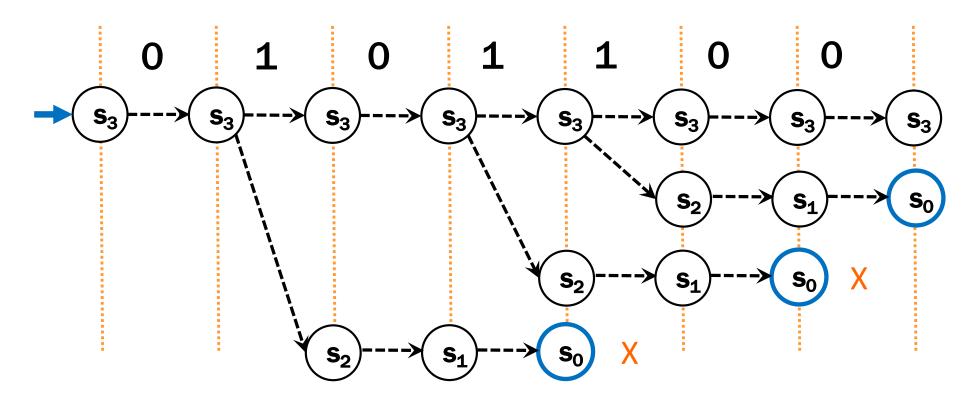




Parallel Exploration view of an NFA



Input string 0101100



NFAs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
 - $-\varnothing$, ε are regular expressions
 - \boldsymbol{a} is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:

```
(A ∪ B)
(AB)
A*
```

Base Case

Case Ø:

• Case ε:

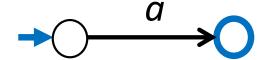
• Case a:

Base Case

Case Ø:

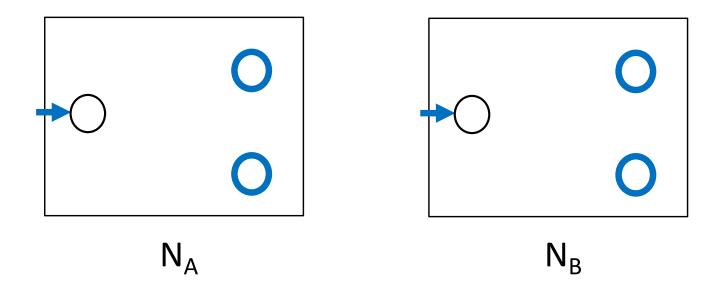
• Case ε:

• Case a:

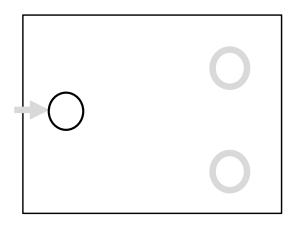


Inductive Hypothesis

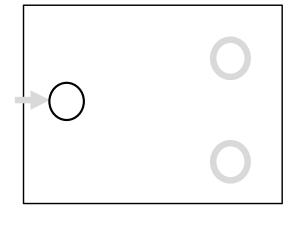
• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B



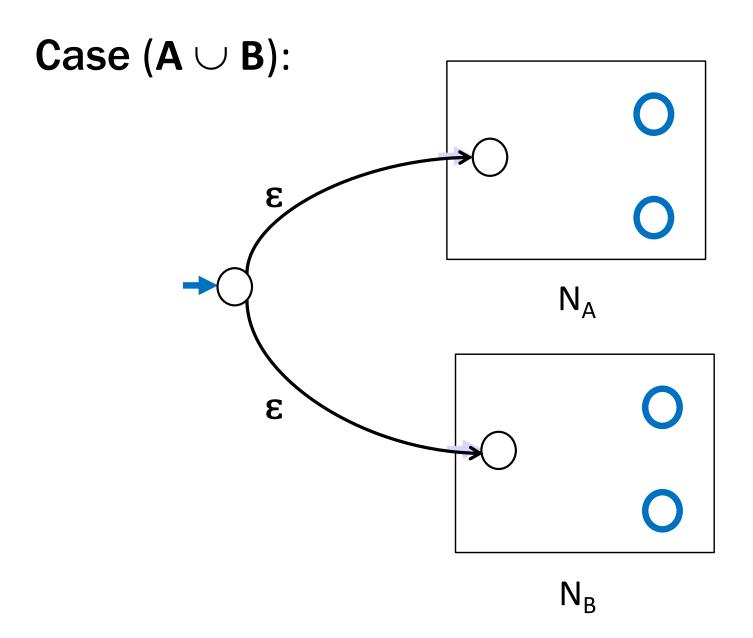
Case (A \cup B):



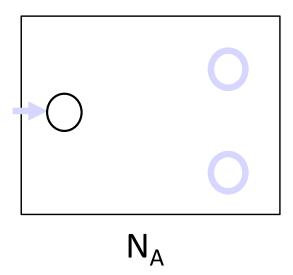
 N_{A}

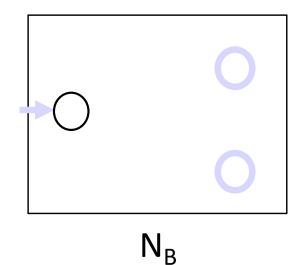


 N_{B}

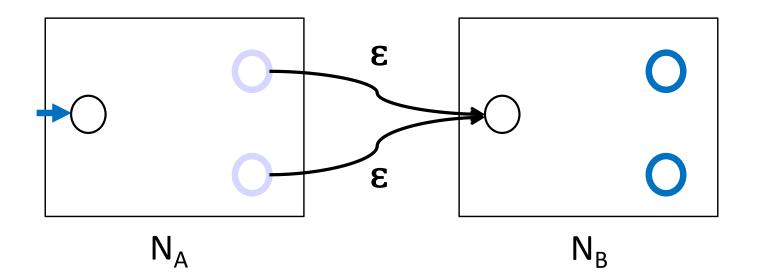


Case (AB):

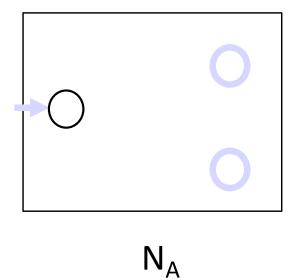




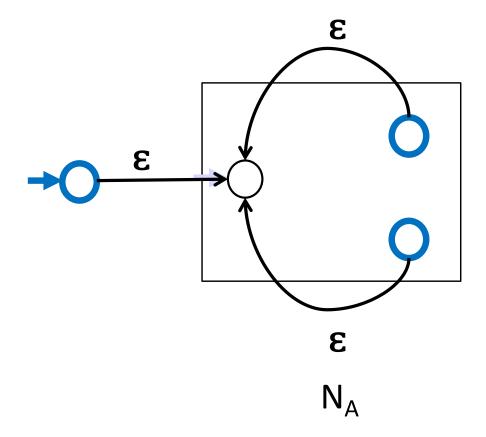
Case (AB):



Case A*



Case A*



Build an NFA for (01 \cup 1)*0

Solution

(01 ∪1)*0

