
CSE 311: Foundations of Computing

Lecture 22:  DFAs and Finite State Machines with Output



Reminders

• HW7 due next Wednesday
– slightly longer than HW6, so 110 points
– includes a more interesting structural induction

defines 1 data type, 3 functions, and then proves some things about them

– start early!

• If you want to test out your grammars, you can 
give this a try:

https://homes.cs.washington.edu/~kevinz/grammar-test/

Instructions on the page

https://homes.cs.washington.edu/~kevinz/grammar-test/


Last class: Finite State Machines

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the 

set of strings that reach a final state from the start
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Last class: Finite State Machines

• Each machine designed for strings over some 
fixed alphabet Σ.

• Must have a transition defined from each state for 
every symbol in Σ.
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Strings over {0, 1, 2}

M1: Strings with an even number of 2’s
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Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

2 0,10,1

2



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0
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Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0
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FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {

int sum = 0;  // state

for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) == '2’)

sum = (sum + 2) % 3;

if (str.charAt(i) == '1’)

sum = (sum + 1) % 3;

}

return sum == 0;

}



FSM to Java code

int[][] TRANSITION = {...};

boolean sumCongruentToZero(String str) {

int state = 0;

for (int i = 0; i < str.length(); i++) {

int d = str.charAt(i) - ‘0’;

state = TRANSITION[state][d];

}

return state == 0;

}



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0
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What language does this machine recognize?
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What language does this machine recognize?
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The set of all binary strings with # of 1’s ≣ # of 0’s (mod 2)
(both are even or both are odd).

Can you think of a simpler description?



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0
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Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0
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Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0
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Strings over {0,1,2} w/ even number of 2’s OR mod 3 sum 0?
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Strings over {0,1,2} w/ even number of 2’s OR mod 3 sum 0
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The set of binary strings with a 1 in the 3rd position from the start



The set of binary strings with a 1 in the 3rd position from the start
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The set of binary strings with a 1 in the 3rd position from the end



3 bit shift register
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“Remember the last three bits”
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The set of binary strings with a 1 in the 3rd position from the end
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The beginning versus the end
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Adding Output to Finite State Machines

• So far we have considered finite state 
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers



Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar



Vending Machine, v0.1
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Basic transitions on N (nickel),  D (dime),  B (butterfinger), S (snickers)



Vending Machine, v0.2
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Adding output to states:  N – Nickel,  S – Snickers, B – Butterfinger
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Vending Machine, v1.0
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Adding additional “unexpected” transitions to cover all symbols for each state
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Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition:  x is in the language recognized by an 
NFA if and only if some valid execution of the 
machine gets to an accept state
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Consider This NFA

What language does this NFA accept?
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Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

10(10)*  ⋃ 111 (0 ⋃ 1)* 



NFA ε-moves 
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NFA ε-moves 
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Strings over {0,1,2} w/even # of 2’s OR sum to 0 mod 3



NFA for set of binary strings with a 1 in the 3rd position from the end



NFA for set of binary strings with a 1 in the 3rd position from the end
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