
CSE 311: Foundations of Computing

Lecture 22: DFAs and Finite State Machines with Output

Reminders

• HW7 due next Wednesday
– slightly longer than HW6, so 110 points
– includes a more interesting structural induction

defines 1 data type, 3 functions, and then proves some things about them

– start early!

• If you want to test out your grammars, you can
give this a try:

https://homes.cs.washington.edu/~kevinz/grammar-test/

Instructions on the page

https://homes.cs.washington.edu/~kevinz/grammar-test/

Last class: Finite State Machines

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the

set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

0Old State 0 1
s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Old State 0 1
s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Last class: Finite State Machines

• Each machine designed for strings over some
fixed alphabet Σ.

• Must have a transition defined from each state for
every symbol in Σ.

s0 s2 s3s1
111

0,1

0

0

0

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

2 0,10,1

2

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

2 0,10,1

2

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0
1 1

1

2 2

2

FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {

int sum = 0; // state

for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) == '2’)

sum = (sum + 2) % 3;

if (str.charAt(i) == '1’)

sum = (sum + 1) % 3;

}

return sum == 0;

}

FSM to Java code

int[][] TRANSITION = {...};

boolean sumCongruentToZero(String str) {

int state = 0;

for (int i = 0; i < str.length(); i++) {

int d = str.charAt(i) - ‘0’;

state = TRANSITION[state][d];

}

return state == 0;

}

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0
1 1

1

2 2

2

What language does this machine recognize?

s0

s2 s3

s1
1

1

1

1

0

0

0

0

What language does this machine recognize?

s0

s2 s3

s1
1

1

1

1

0

0

0

0

The set of all binary strings with # of 1’s ≣ # of 0’s (mod 2)
(both are even or both are odd).

Can you think of a simpler description?

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0
1 1

1

2 2

2

Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

Strings over {0,1,2} w/ even number of 2’s and mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR mod 3 sum 0?

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

The set of binary strings with a 1 in the 3rd position from the start

The set of binary strings with a 1 in the 3rd position from the start

s0 s2 As1
10,10,1

0,1

R

0
0,1

The set of binary strings with a 1 in the 3rd position from the end

3 bit shift register

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

“Remember the last three bits”

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

10

00 01 10 11

11

1

0

0 0

0 0 0 01

1

1
1

The set of binary strings with a 1 in the 3rd position from the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

The set of binary strings with a 1 in the 3rd position from the end

The beginning versus the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00
0 1

0

0

00

s0 s2 As1
10,10,1

0,1

R

0 0,1

Adding Output to Finite State Machines

• So far we have considered finite state
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

Vending Machine, v0.1

0 5 10 15

D D

N N N, D

B, S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

0’
[B]

5 10

15

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D B

S

S

Vending Machine, v1.0

0’
[B]

5 10

15

Adding additional “unexpected” transitions to cover all symbols for each state

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D
B

S

S

15”
[D]S

B

B,S

B,S

B,S

B,S
B,S

N

N

N

D

D

D

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an
NFA if and only if some valid execution of the
machine gets to an accept state

s0 s2 s3s1
111

0,10,1

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

10(10)* ⋃ 111 (0 ⋃ 1)*

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

Strings over {0,1,2} w/even # of 2’s OR sum to 0 mod 3

NFA for set of binary strings with a 1 in the 3rd position from the end

NFA for set of binary strings with a 1 in the 3rd position from the end

0,1

s3 s2 s1 s0
0,1 0,11

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11

