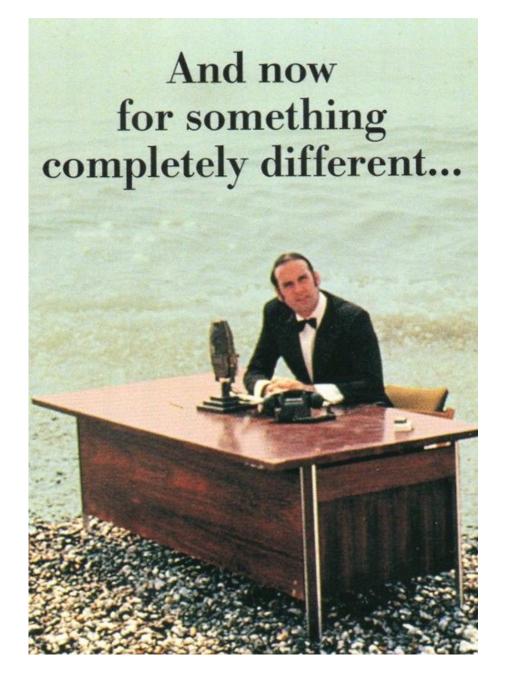

## **CSE 311: Foundations of Computing**

Lecture 20: Context-Free Grammars, Relations and Directed Graphs



- ε matches the empty string
- *a* matches the one character string *a*
- A ∪ B matches all strings that either A matches or B matches (or both)
- **AB** matches all strings that have a first part that **A** matches followed by a second part that **B** matches
- A\* matches all strings that have any number of strings (even 0) that A matches, one after another


– equivalently,  $A^*$  =  $\epsilon \cup A \cup AA \cup AAA \cup ...$ 

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
  - A finite set V of variables that can be replaced
  - Alphabet  $\Sigma$  of *terminal symbols* that can't be replaced
  - One variable, usually **S**, is called the *start symbol*
- The rules involving a variable **A** are written as

 $\mathbf{A} \to \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$ 

where each  $w_i$  is a string of variables and terminals – that is  $w_i \in (\mathbf{V} \cup \Sigma)^*$ 

#### **Relations and Directed Graphs**



Let A and B be sets, A **binary relation from** A **to** B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of  $A \times A$ 

 $\geq$  on  $\mathbb{N}$ That is: {(x,y) : x  $\geq$  y and x, y  $\in \mathbb{N}$ } < on  $\mathbb{R}$ 

That is:  $\{(x,y) : x < y \text{ and } x, y \in \mathbb{R}\}$ 

= on  $\Sigma^*$ That is: {(x,y) : x = y and x, y  $\in \Sigma^*$ }

# $\subseteq$ on $\mathcal{P}(U)$ for universe U That is: {(A,B) : A $\subseteq$ B and A, B $\in \mathcal{P}(U)$ }

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) \mid x \equiv y \pmod{5}\}$$

$$\mathbf{R}_3 = \{(c_1, c_2) \mid c_1 \text{ is a prerequisite of } c_2 \}$$

**R**<sub>4</sub> = {(s, c) | student s has taken course c }

Let R be a relation on A.

R is **reflexive** iff  $(a,a) \in R$  for every  $a \in A$ 

R is **symmetric** iff  $(a,b) \in R$  implies  $(b, a) \in R$ 

R is **antisymmetric** iff  $(a,b) \in R$  and  $a \neq b$  implies  $(b,a) \notin R$ 

R is **transitive** iff  $(a,b) \in R$  and  $(b, c) \in R$  implies  $(a, c) \in R$ 

- $\geq$  on  $\mathbb N$  :
- < on  $\mathbb R$  :
- = on  $\Sigma^*$  :
- $\subseteq$  on  $\mathcal{P}(\mathsf{U})$ :
- $R_2 = \{(x, y) \mid x \equiv y \pmod{5} \}:$
- $R_3 = \{(c_1, c_2) \mid c_1 \text{ is a prerequisite of } c_2 \}:$

R is **reflexive** iff  $(a,a) \in R$  for every  $a \in A$ R is **symmetric** iff  $(a,b) \in R$  implies  $(b, a) \in R$ R is **antisymmetric** iff  $(a,b) \in R$  and  $a \neq b$  implies  $(b,a) \notin R$ R is **transitive** iff  $(a,b) \in R$  and  $(b, c) \in R$  implies  $(a, c) \in R$ 

- $\geq$  on  $\mathbb{N}$  : Reflexive, Antisymmetric, Transitive
- < on  $\mathbb{R}$ : Antisymmetric, Transitive
- = on  $\Sigma^*$ : Reflexive, Symmetric, Antisymmetric, Transitive
- $\subseteq$  on  $\mathcal{P}(U)$ : Reflexive, Antisymmetric, Transitive
- $R_2 = \{(x, y) \mid x \equiv y \pmod{5}\}$ : Reflexive, Symmetric, Transitive
- $R_3 = \{(c_1, c_2) | c_1 \text{ is a prerequisite of } c_2 \}$ : Antisymmetric

R is **reflexive** iff  $(a,a) \in R$  for every  $a \in A$ R is **symmetric** iff  $(a,b) \in R$  implies  $(b, a) \in R$ R is **antisymmetric** iff  $(a,b) \in R$  and  $a \neq b$  implies  $(b,a) \notin R$ R is **transitive** iff  $(a,b) \in R$  and  $(b, c) \in R$  implies  $(a, c) \in R$  Let *R* be a relation from *A* to *B*. Let *S* be a relation from *B* to *C*.

The composition of *R* and *S*,  $R \circ S$  is the relation from *A* to *C* defined by:

 $R \circ S = \{ (a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S \}$ 

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

# $(a,b) \in Parent iff b is a parent of a$ $(a,b) \in Sister iff b is a sister of a$

## When is $(x,y) \in Parent \circ Sister?$

## When is $(x,y) \in Sister \circ Parent?$

 $R \circ S = \{(a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$ 

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

$$R^2 = R \circ R$$
  
= {(*a*, *c*) | ∃*b* such that (*a*, *b*) ∈ *R* and (*b*, *c*) ∈ *R* }

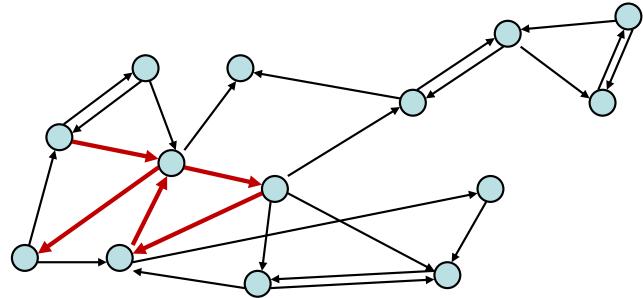
$$R^0 = \{(a, a) \mid a \in A\}$$
 "the equality relation on  $A$ "

$$R^1 = R = R^0 \circ R$$

 $R^{n+1} = R^n \circ R$  for  $n \ge 0$ 

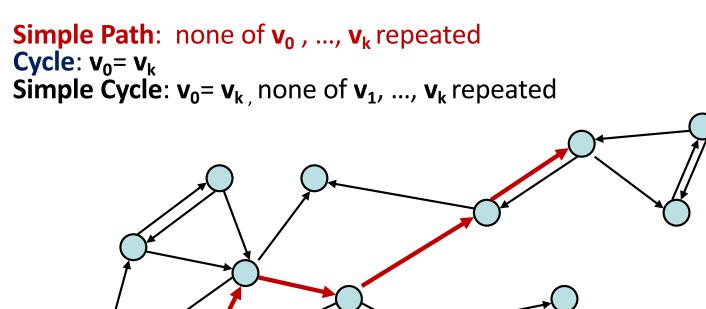
Relation  $\boldsymbol{R}$  on  $\boldsymbol{A} = \{a_1, \dots, a_p\}$ 

$$\boldsymbol{m}_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \boldsymbol{R} \\ 0 & \text{if } (a_i, a_j) \notin \boldsymbol{R} \end{cases}$$


 $\{\,(1,\,1),\,(1,\,2),\,\,(1,\,4),\,\,(2,\,1),\,\,(2,\,3),\,(3,\,2),\,(3,\,3),\,(4,\,2),\,(4,\,3)\,\}$ 

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 1 |
| 2 | 1 | 0 | 1 | 0 |
| 3 | 0 | 1 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 |

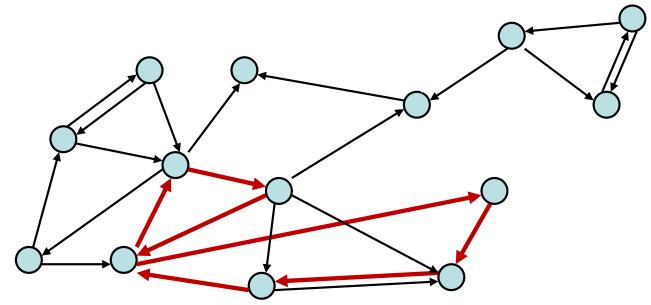
G = (V, E) V - vertices E - edges, ordered pairs of vertices


**Path**:  $v_0$ ,  $v_1$ , ...,  $v_k$  with each ( $v_i$ ,  $v_{i+1}$ ) in E

Simple Path: none of  $v_0$ , ...,  $v_k$  repeated Cycle:  $v_0 = v_k$ Simple Cycle:  $v_0 = v_{k_1}$  none of  $v_1$ , ...,  $v_k$  repeated



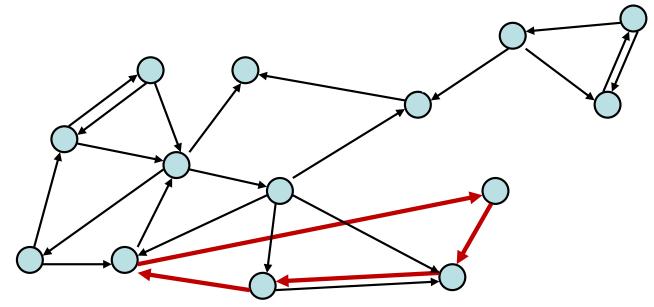
G = (V, E) V - vertices E - edges, ordered pairs of vertices


**Path**:  $v_0$ ,  $v_1$ , ...,  $v_k$  with each ( $v_i$ ,  $v_{i+1}$ ) in E



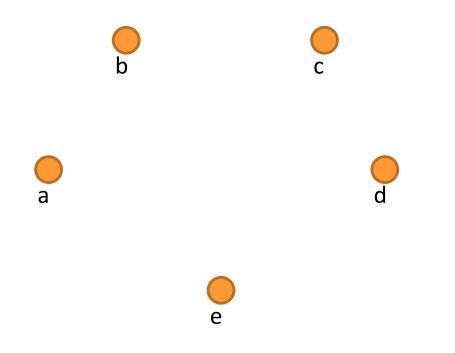
G = (V, E) V – vertices E – edges, ordered pairs of vertices

**Path**:  $v_0$ ,  $v_1$ , ...,  $v_k$  with each ( $v_i$ ,  $v_{i+1}$ ) in E


```
Simple Path: none of v_0, ..., v_k repeated
Cycle: v_0 = v_k
Simple Cycle: v_0 = v_{k_1} none of v_1, ..., v_k repeated
```

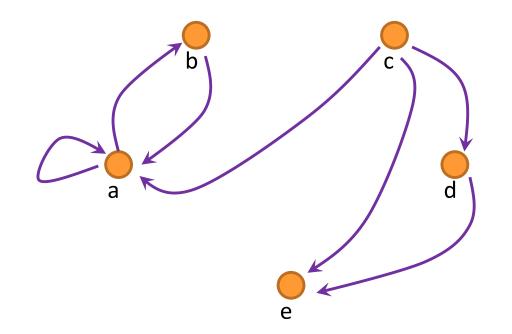


G = (V, E) V – vertices E – edges, ordered pairs of vertices


**Path**:  $v_0$ ,  $v_1$ , ...,  $v_k$  with each ( $v_i$ ,  $v_{i+1}$ ) in E

Simple Path: none of  $v_0$ , ...,  $v_k$  repeated Cycle:  $v_0 = v_k$ Simple Cycle:  $v_0 = v_{k_1}$  none of  $v_1$ , ...,  $v_k$  repeated




**Directed Graph Representation (Digraph)** 

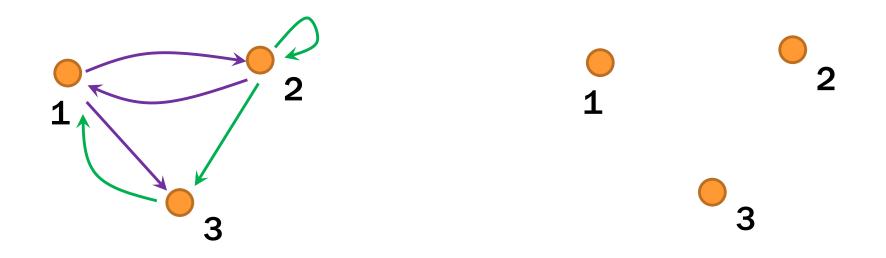
{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



**Directed Graph Representation (Digraph)** 

 $\{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) \}$ 




## **Relational Composition using Digraphs**

If  $S = \{(2, 2), (2, 3), (3, 1)\}$  and  $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute  $R \circ S$ 



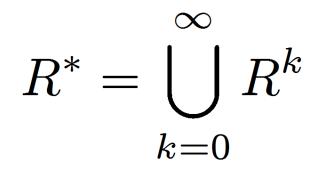
## **Relational Composition using Digraphs**

If  $S = \{(2, 2), (2, 3), (3, 1)\}$  and  $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute  $R \circ S$ 



## **Relational Composition using Digraphs**

If  $S = \{(2, 2), (2, 3), (3, 1)\}$  and  $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute  $R \circ S$ 




Defn: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let R be a relation on a set A. There is a path of length n from a to b if and only if  $(a,b) \in R^n$ 

Defn: Two vertices in a graph are **connected** iff there is a path between them.

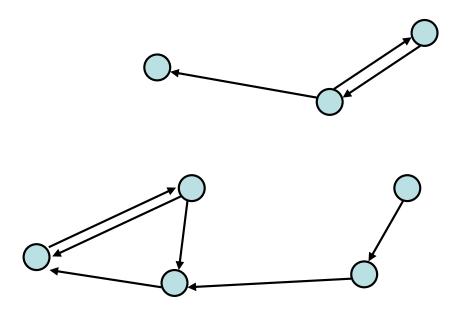
Let **R** be a relation on a set **A**. The **connectivity** relation  $\mathbf{R}^*$  consists of the pairs (a,b) such that there is a path from a to b in **R**.



Note: The text uses the wrong definition of this quantity. What the text defines (ignoring k=0) is usually called  $R^+$ 

#### How Properties of Relations show up in Graphs

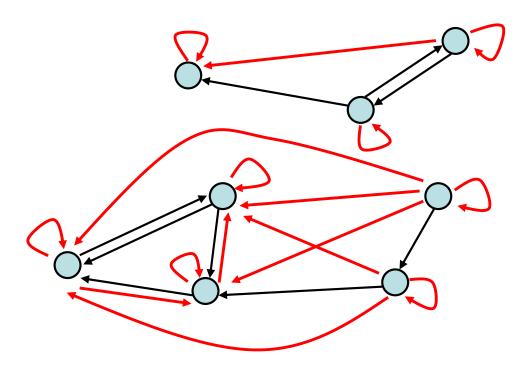
Let R be a relation on A.


R is **reflexive** iff  $(a,a) \in R$  for every  $a \in A$ 

R is symmetric iff  $(a,b) \in R$  implies  $(b, a) \in R$ 

R is **antisymmetric** iff  $(a,b) \in R$  and  $a \neq b$  implies  $(b,a) \notin R$ 

R is **transitive** iff  $(a,b) \in R$  and  $(b, c) \in R$  implies  $(a, c) \in R$ 


## **Transitive-Reflexive Closure**



Add the **minimum possible** number of edges to make the relation transitive and reflexive.

The **transitive-reflexive closure** of a relation R is the connectivity relation  $R^*$ 

## **Transitive-Reflexive Closure**



Relation with the **minimum possible** number of **extra edges** to make the relation both transitive and reflexive.

The **transitive-reflexive closure** of a relation R is the connectivity relation  $R^*$ 

Let  $A_1, A_2, ..., A_n$  be sets. An *n*-ary relation on these sets is a subset of  $A_1 \times A_2 \times \cdots \times A_n$ .

#### STUDENT

| Student_Name | ID_Number | Office | GPA  |
|--------------|-----------|--------|------|
| Knuth        | 328012098 | 022    | 4.00 |
| Von Neuman   | 481080220 | 555    | 3.78 |
| Russell      | 238082388 | 022    | 3.85 |
| Einstein     | 238001920 | 022    | 2.11 |
| Newton       | 1727017   | 333    | 3.61 |
| Karp         | 348882811 | 022    | 3.98 |
| Bernoulli    | 2921938   | 022    | 3.21 |

# **Relational Databases**

| STUDENT      |           |        |      |        |
|--------------|-----------|--------|------|--------|
| Student_Name | ID_Number | Office | GPA  | Course |
| Knuth        | 328012098 | 022    | 4.00 | CSE311 |
| Knuth        | 328012098 | 022    | 4.00 | CSE351 |
| Von Neuman   | 481080220 | 555    | 3.78 | CSE311 |
| Russell      | 238082388 | 022    | 3.85 | CSE312 |
| Russell      | 238082388 | 022    | 3.85 | CSE344 |
| Russell      | 238082388 | 022    | 3.85 | CSE351 |
| Newton       | 1727017   | 333    | 3.61 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE311 |
| Karp         | 348882811 | 022    | 3.98 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE344 |
| Karp         | 348882811 | 022    | 3.98 | CSE351 |
| Bernoulli    | 2921938   | 022    | 3.21 | CSE351 |

What's not so nice?

#### STUDENT

| Student_Name | ID_Number | Office | GPA  |
|--------------|-----------|--------|------|
| Knuth        | 328012098 | 022    | 4.00 |
| Von Neuman   | 481080220 | 555    | 3.78 |
| Russell      | 238082388 | 022    | 3.85 |
| Einstein     | 238001920 | 022    | 2.11 |
| Newton       | 1727017   | 333    | 3.61 |
| Karp         | 348882811 | 022    | 3.98 |
| Bernoulli    | 2921938   | 022    | 3.21 |

#### TAKES

| ID_Number | Course |
|-----------|--------|
| 328012098 | CSE311 |
| 328012098 | CSE351 |
| 481080220 | CSE311 |
| 238082388 | CSE312 |
| 238082388 | CSE344 |
| 238082388 | CSE351 |
| 1727017   | CSE312 |
| 348882811 | CSE311 |
| 348882811 | CSE312 |
| 348882811 | CSE344 |
| 348882811 | CSE351 |
| 2921938   | CSE351 |



| Find all officer, $\Pi$ (STUDENT)                             | Office |      |
|---------------------------------------------------------------|--------|------|
| Find all offices: <b><b>Π</b>Office(STUDENT)</b>              |        |      |
|                                                               | 555    |      |
|                                                               | 333    |      |
|                                                               |        |      |
|                                                               | Office | GPA  |
|                                                               | 022    | 4.00 |
| Find offices and GPAs: <b>Π<sub>Office,GPA</sub>(STUDENT)</b> | 555    | 3.78 |
|                                                               | 022    | 3.85 |
|                                                               | 022    | 2.11 |
|                                                               | 333    | 3.61 |
|                                                               | 022    | 3.98 |
|                                                               | 022    | 3.21 |

#### Find students with GPA > 3.9 : $\sigma_{GPA>3.9}$ (STUDENT)

| Student_Name | ID_Number | Office | GPA  |
|--------------|-----------|--------|------|
| Knuth        | 328012098 | 022    | 4.00 |
| Karp         | 348882811 | 022    | 3.98 |

#### Retrieve the name and GPA for students with GPA > 3.9: $\Pi_{\text{Student}_Name, \text{GPA}}(\sigma_{\text{GPA}>3.9}(\text{STUDENT}))$

| Student_Name | GPA  |
|--------------|------|
| Knuth        | 4.00 |
| Karp         | 3.98 |

# **Database Operations: Natural Join**

#### Student ⋈ Takes

| Student_Name | ID_Number | Office | GPA  | Course |
|--------------|-----------|--------|------|--------|
| Knuth        | 328012098 | 022    | 4.00 | CSE311 |
| Knuth        | 328012098 | 022    | 4.00 | CSE351 |
| Von Neuman   | 481080220 | 555    | 3.78 | CSE311 |
| Russell      | 238082388 | 022    | 3.85 | CSE312 |
| Russell      | 238082388 | 022    | 3.85 | CSE344 |
| Russell      | 238082388 | 022    | 3.85 | CSE351 |
| Newton       | 1727017   | 333    | 3.61 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE311 |
| Karp         | 348882811 | 022    | 3.98 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE344 |
| Karp         | 348882811 | 022    | 3.98 | CSE351 |
| Bernoulli    | 2921938   | 022    | 3.21 | CSE351 |