CSE 311: Foundations of Computing

Lecture 19: Regular Expressions \&
 Context-Free Grammars

Review: each regular expression is a "pattern"

ε matches the empty string
a matches the one character string a
$\mathbf{A} \cup \mathbf{B}$ matches all strings that either \mathbf{A} matches or \mathbf{B} matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another

Examples

- All binary strings that have an even \# of 1's

Examples

- All binary strings that have an even \# of 1's

$$
\text { e.g., } 0^{*}\left(10^{*} 10^{*}\right)^{*}
$$

Examples

- All binary strings that have an even \# of 1's

$$
\text { e.g., } 0^{*}\left(10^{*} 10^{*}\right)^{*}
$$

- All binary strings that don't contain 101

Examples

- All binary strings that have an even \# of 1's

$$
\text { e.g., } 0^{*}\left(10^{*} 10^{*}\right)^{*}
$$

- All binary strings that don't contain 101

$$
\text { e.g., } 0^{*}\left(1 \cup 000^{*}\right)^{*} 0^{*}
$$

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set V of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually \mathbf{S}, is called the start symbol
- The rules involving a variable \mathbf{A} are written as

$$
\mathbf{A} \rightarrow \mathrm{w}_{1}\left|\mathrm{w}_{2}\right| \cdots \mid \mathrm{w}_{\mathrm{k}}
$$

where each w_{i} is a string of variables and terminals that is $w_{i} \in(\mathbf{V} \cup \Sigma)^{*}$

How CFGs generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for \mathbf{A}
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S} 0 \mid 1 \mathbf{S 1 | 0 | 1 | \varepsilon}$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O} \mathbf{~} 1 \mathbf{S 1} 10|1| \varepsilon$

The set of all binary palindromes

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OSO | $1 \mathbf{S} 1|0| 1 \mid \varepsilon$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S 1}| \varepsilon$

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O}|\mathbf{1 S 1}| 0|1| \varepsilon$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S} 1| \varepsilon$

0*1*

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow \text { OS1 } \mid \varepsilon
$$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon
$$

Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \varepsilon$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon
$$

Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \varepsilon$

The set of all strings of matched parentheses

Simple Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
& \quad|5| 6|7| 8 \mid 9
\end{aligned}
$$

Generate $(2 * x)+y$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two fundamentally different ways

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two fundamentally different ways

$$
\begin{aligned}
& E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E * E \Rightarrow x+y * E \Rightarrow x+y * z \\
& E \Rightarrow E * E \Rightarrow E+E * E \Rightarrow x+E * E \Rightarrow x+y * E \Rightarrow x+y * z
\end{aligned}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right

$$
\mathbf{S} \rightarrow \mathbf{0 S} 0|\mathbf{1 S} 1| 0|1| \varepsilon
$$

Parse tree of 01110

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F} - factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{X}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

No longer allows:

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{X}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F} - factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{X}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Still allows:

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{Y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

CFGs are more general than REs

- CFG to match RE ε

$$
\mathbf{S} \rightarrow \varepsilon
$$

- CFG to match RE \mathbf{a} (for any $a \in \Sigma$)

$$
\mathbf{S} \rightarrow \mathrm{a}
$$

CFGs are more general than REs

- CFG to match RE ε

$$
\mathbf{S} \rightarrow \varepsilon
$$

- CFG to match RE \mathbf{a} (for any $a \in \Sigma$)

$$
\mathbf{S} \rightarrow \mathrm{a}
$$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{1} matches RE A CFG with start symbol $\mathbf{S}_{\mathbf{2}}$ matches RE B

- CFG to match RE $\mathbf{A} \cup \mathbf{B}$

$$
\mathrm{S} \rightarrow \mathrm{~S}_{1} \mid \mathrm{S}_{2}
$$

- CFG to match RE AB

$$
\mathbf{S} \rightarrow \mathbf{S}_{1} \mathbf{S}_{2}
$$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{1} matches RE A

- CFG to match RE $A^{*} \quad(=\boldsymbol{\varepsilon} \cup \mathbf{A} \cup \mathbf{A} \mathbf{A} \cup \mathbf{A A A} \cup \ldots)$

$$
\mathbf{S} \rightarrow \mathbf{S}_{1} \mathbf{S} \mid \varepsilon
$$

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>, <assignment-statement>, <condition>
$::=$ used instead of \rightarrow

BNF for C

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
        block |
        "if" "(" expression ")" statement |
        "if" "(" expression ")" statement "else" statement |
        "switch" "(" expression ")" statement
        "while" "(" expression ")" statement |
        "do" statement "while" "(" expression ")" ";" |
        "for" "(" expression? ";" expression? ";" expression? ")" statement |
        "goto" identifier ";" |
        "continue" ";" |
        "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression:
            unary-expression (
                "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

