
CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &
Context-Free Grammars

[Audience	looks	around]	
“What	is	going	on?	There	must	be	some	context	we’re	missing”

Review: each regular expression is a “pattern”

e matches	the	empty string
a matches	the	one	character	string	a
AÈ Bmatches	all	strings	that	either	Amatches	or	B
matches	(or	both)

ABmatches	all	strings	that	have	a	first	part	that	A
matches	followed	by	a	second	part	that	Bmatches

A*matches	all	strings	that	have	any	number	of	strings	
(even	0)	that	Amatches,	one	after	another

Examples

• All binary strings that have an even # of 1’s

Examples

• All binary strings that have an even # of 1’s

e.g., 0*(10*10*)*

Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g., 0*(10*10*)*

Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g., 0*(10*10*)*

e.g., 0*(1	⋃ 000*)*	0*

Limitations of Regular Expressions

• Not all languages can be specified by regular
expressions

• Even some easy things like
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.

Context-Free Grammars

• A	Context-Free	Grammar	(CFG)	is	given	by	a	finite	set	
of	substitution	rules	involving
– A	finite	set	V of	variables	that	can	be	replaced
– Alphabet	S of	terminal	symbols that	can’t	be	replaced
– One	variable,	usually	S,	is	called	the	start	symbol

• The	rules	involving	a	variable	A are	written	as
A® w1 |		w2 |	⋯ |	wk

where	each	wi is	a	string	of	variables	and	terminals	–
that	is	wi ∈ (VÈ S)*

How CFGs generate strings

• Begin	with	start	symbol	S

• If	there	is	some	variable	A in	the	current	string	you	
can	replace	it	by	one	of	the	w’s	in	the	rules	for	A
– A® w1 |		w2 |	⋯ |	wk

–Write	this	as				xAy⇒ xwy
– Repeat	until	no	variables	left

• The	set	of	strings	the	CFG	generates	are	all	strings	
produced	in	this	way	that	have	no	variables

Example Context-Free Grammars

Example: S	® 0S0	|	1S1	|	0	|	1	|	e

Example Context-Free Grammars

Example: S	® 0S0	|	1S1	|	0	|	1	|	e

The set of all binary palindromes

Example Context-Free Grammars

Example: S	® 0S0	|	1S1	|	0	|	1	|	e

Example: S	® 0S |	S1	|	e

The set of all binary palindromes

Example Context-Free Grammars

Example: S	® 0S0	|	1S1	|	0	|	1	|	e

Example: S	® 0S |	S1	|	e

The set of all binary palindromes

0*1*

Example Context-Free Grammars

Grammar for 0'1': 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example Context-Free Grammars

Grammar for 0'1': 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

S® 0S1 | e

Example Context-Free Grammars

Grammar for 0'1': 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example: S ® (S) | SS | e

S® 0S1 | e

Example Context-Free Grammars

Grammar for 0'1': 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example: S ® (S) | SS | e

S® 0S1 | e

The set of all strings of matched parentheses

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

Generate x+y∗z in two fundamentally different ways

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

Generate x+y∗z in two fundamentally different ways

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y

E ⇒ E+E⇒ x+E⇒ x+E∗E⇒ x+y∗E⇒ x+y∗z

E ⇒ E∗E⇒	E+E∗E⇒ x+E∗E⇒ x+y∗E⇒ x+y∗z

Parse Trees

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by

symbols of w left-to-right for some rule A® w
– The symbols of x label the leaves ordered left-to-right

S	® 0S0	|	1S1	|	0	|	1	|	e

S

0 0S

S1 1

1
Parse tree of 01110

CFGs and recursively-defined sets of strings

• A	CFG	with	the	start	symbol	S as	its	only	variable	
recursively	defines	the	set	of	strings	of	terminals	
that	S can	generate

• A	CFG	with	more	than	one	variable	is	a	
simultaneous	recursive	definition	of	the	sets	of	
strings	generated	by	each of	its	variables
– Sometimes	necessary	to	use	more	than	one

building precedence in simple arithmetic expressions

• E – expression		(start	symbol)
• T – term			F – factor			I – identifier		N - number

E ® T |	E+T
T	 ® F |	F∗T
F	 ® (E) |	I |	N
I	 ® x	|	y	|	z
N	 ® 0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9

E

E

+
x

E*

z
y

E E

No longer
allows:

building precedence in simple arithmetic expressions

• E – expression		(start	symbol)
• T – term			F – factor			I – identifier		N - number

E ® T |	E+T
T	 ® F |	F∗T
F	 ® (E) |	I |	N
I	 ® x	|	y	|	z
N	 ® 0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9

E

F

+
x

T*

zy

T

?

building precedence in simple arithmetic expressions

• E – expression		(start	symbol)
• T – term			F – factor			I – identifier		N - number

E ® T |	E+T
T	 ® F |	F∗T
F	 ® (E) |	I |	N
I	 ® x	|	y	|	z
N	 ® 0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9

E

E

+

x

E

*
zy

E

E

Still
allows:

building precedence in simple arithmetic expressions

• E – expression		(start	symbol)
• T – term			F – factor			I – identifier		N - number

E ® T |	E+T
T	 ® F |	F∗T
F	 ® (E) |	I |	N
I	 ® x	|	y	|	z
N	 ® 0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9

E

T

+

x

T

*
zy

E

F

CFGs are more general than REs

• CFG	to	match	RE	e

S	® e

• CFG	to	match	RE	a (for	any	𝑎 Î S)

S	® a

CFGs are more general than REs

• CFG	to	match	RE	e

S	® e

• CFG	to	match	RE	a (for	any	𝑎 Î S)

S	® a

CFGs are more general than REs

Suppose CFG	with	start	symbol	S1 matches	RE	A
CFG	with	start	symbol	S2 matches	RE	B

• CFG	to	match	RE	A È B

S	® S1 |	S2

• CFG	to	match	RE	AB

S	® S1	S2

CFGs are more general than REs

Suppose CFG	with	start	symbol	S1 matches	RE	A

• CFG	to	match	RE	A* (=	e È A È AA È AAA È ...)

S	® S1 S	|	e

Backus-Naur Form (The same thing…)

BNF (Backus-Naur Form) grammars
– Originally used to define programming

languages
– Variables denoted by long names in angle

brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
∷= used instead of ®

BNF for C

Parse Trees

Back to middle school:
<sentence>∷=<noun phrase><verb phrase>
<noun phrase>∷==<article><adjective><noun>
<verb phrase>∷=<verb><adverb>|<verb><object>
<object>∷=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

