CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &

Context-Free Grammars

N

st

MAL LANGUAGED

I0™ ANNUAL
OSIUM ON

4
ALY

(eon\

I'E<
7

GRAMMAR!

[Audience looks around]

“What is going on? There must be some context we’re missing”

77

Review: each regular expression is a “pattern

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches or B
matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another

Examples

* All binary strings that have an even # of 1’s

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10*10%*)*

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10*10%*)*

* All binary strings that don’t contain 101

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10*10%*)*

* All binary strings that don’t contain 101

e.g., 0%(1U000%)* 0*

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O’s and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The rules involving a variable A are written as
A—>w| wy || w

where each w; is a string of variables and terminals —
thatisw, € (VU X)”

How CFGs generate strings

* Begin with start symbol S

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

—A-ow | w, || w
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG generates are all strings
produced in this way that have no variables

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

The set of all binary palindromes

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

The set of all binary palindromes

Example: S—>0S]|S1]|¢

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]c¢

The set of all binary palindromes

Example: S—>0S]|S1]|¢

0*1*

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1’s)

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1’s)

S->0S1|¢

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1’s)

S->0S1|¢

Example: SH>O)]|SS| ¢

Example Context-Free Grammars

Grammar for {0"1":n > 0}
(all strings with same # of O’s and 1’s with all O’s before 1’s)

S—>0S81]|¢
Example: S—>)|SS]| ¢

The set of all strings of matched parentheses

Simple Arithmetic Expressions

E> E+E|E<E | (E) x|y |z]|0]|1]2]|3]|4
|5]16]7]8]9

Generate (2xx) +vy

Simple Arithmetic Expressions

E> E+E|E<E | (E) x|y |z]|0]|1]2]|3]|4
|5]16]7]8]9

Generate (2xx) +vy

E = E+E = (E)+E = (E*E)+E = (2*E)+E = (2*X)+E = (2*X)+y

Simple Arithmetic Expressions

E> E+E|E<E | (E) x|y |z]|0]|1]2]|3]|4
|5]16]7]8]9

Generate (2xx) +vy

E = E+E = (E)+E = (E*E)+E = (2*E)+E = (2*X)+E = (2*X)+y

Generate x+y+*z in two fundamentally different ways

Simple Arithmetic Expressions

E> E+E|E<E | (E) x|y |z]|0]|1]2]|3]|4
|5]16]7]8]9

Generate (2xx) +vy

E = E+E = (E)+E = (E*E)+E = (2*E)+E = (2*X)+E = (2*X)+y

Generate x+y+*z in two fundamentally different ways

E = E+E = x+E = x+E*E = x+y*E = x+y*z

E = E*E = E+E*E = x+E*E = x+y*E = x+y*z

Parse Trees

Suppose that grammar G generates a string x
* A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A > w

— The symbols of x label the leaves ordered left-to-right
/1N
0SO

1 S 1

S—>0S0|1S1|0]|1]¢

Parse tree of 01110 !

CFGs and recursively-defined sets of strings

A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

e A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F-factor |-identifier N - number
E > T|E+T
T > F| F«T
No longer
F _)(E)lllN allows:
| —>x|y]|z E
N >0|1]2|3|4|5|6]7]|8]9 RN
E x E
1IN
||5 + ||5 Z
X Yy

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F-—factor |-—identifier N - number

E > T|E+T

T > F| F«T

F S (E)|I]|N c

| > x|y|z -

N >0|1]2]|3|4]5|6|7|8]9 RN
F o+« T

/aN]

+

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F-—factor |I-identifier N - number
E > T|E+T
T > F| F«T
Still

F _)(E)lllN allows:

| > x|y]|z E

N —>0[1|2]|3|4]|5]6]7]8]9 .|\
E + E
| /1
X E

* E
|
Y Z

building precedence in simple arithmetic expressions

 E - expression (start symbol)
e T—term F-—factor |-identifier N - number
E — T|E+T
T > F|FxT
F > (E)|I|N
| > x|y]|z

E
N >0|1]|2]3|4]|5]|6]718]9 |\
E + T
VA RN
Xx F *T

A

CFGs are more general than REs

e CFG to match RE ¢

S—>¢

 CFG to match RE a (for any a € %)

S—a

CFGs are more general than REs

e CFG to match RE ¢

S—>¢

 CFG to match RE a (for any a € %)

S—a

CFGs are more general than REs

Suppose CFG with start symbol S, matches RE A
CFG with start symbol S, matches RE B

e CFGtomatchREAUB
S—>S,|S,

e CFG to match RE AB

S—S,S,

CFGs are more general than REs

Suppose CFG with start symbol S, matches RE A

* CFGtomatchREA® (e UAUAAUAAAU..)

S—S,S|¢

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages

— Variables denoted by long names in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —

BNF for C

statement:

((identifier | "case" constant-expression | "default™) ":")*
(expression? ";" |

block |

"if" " (" expression ")" statement |

"if" " (" expression ")" statement "else" statement |
"switch™ " (" expression ")" statement |

"while"™ " (" expression ")" statement |

"do" statement "while™ " (" expression ")" ";" |

"for™ " (" expression? ";" expression? ";" expression? ")" statement
"goto"™ identifier ";" |

"continue™ ";" |

"break" ";" |

"return" expression? ";"

block: "{" declaration* statement* "}"

expression:
assignment-expression$

assignment-expression: (
unary-expression (

'l='I I n *='l | n /='l | n %='l | 'l+='l l 'l_='l
n f\='| | n |='l
)
)* conditional-expression
conditional-expression:
logical-OR-expression ("?" expression ":"

l 'l<<=" | II>>=II |

” &="

conditional-expression)?

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

