## CSE 311: Foundations of Computing

## Lecture 18: Structural Induction, Regular expressions



## Last time: Recursive Definitions of Sets

## Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in $S$ some new objects constructed from these named elements are also in S .
- Exclusion rule: Every element in S follows from the basis step and a finite number of recursive steps


## Last time: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

## Last time: Strings

- An alphabet $\Sigma$ is any finite set of characters
- Set $\Sigma^{*}$ of strings over the alphabet $\Sigma$ is defined by
- Basis: $\varepsilon \in \Sigma^{*}$ ( $\varepsilon$ is the empty string $w /$ no chars)
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$


## Functions on Recursively Defined Sets (on $\Sigma^{*}$ )

## Length:

$$
\operatorname{len}(\varepsilon)=0
$$

$$
\operatorname{len}(w a)=1+\operatorname{len}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}=\varepsilon \\
& (\mathrm{wa})^{R}=\mathrm{a} \cdot \mathrm{w}^{\mathrm{R}} \text { for } \mathrm{w} \in \Sigma^{*}, \mathrm{a} \in \Sigma
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon=x \text { for } x \in \Sigma^{*} \\
& x \bullet \text { wa }=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Number of c's in a string:

$$
\begin{aligned}
& \#_{c}(\varepsilon)=0 \\
& \#_{c}(w c)=\#_{c}(w)+1 \text { for } w \in \Sigma^{*} \\
& \#_{c}(w a)=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma, a \neq c
\end{aligned}
$$

## Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \bullet y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{* "}$. We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.

## Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{* "}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case: $y=\varepsilon$. For any $x \in \Sigma^{*}, \operatorname{len}(x \bullet \varepsilon)=\operatorname{len}(x)=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

## Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* *}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case: $y=\varepsilon$. For any $x \in \Sigma^{*}$, len $(x \bullet \varepsilon)=\operatorname{len}(x)=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{w})$ is true for some arbitrary $w \in \Sigma^{*}$
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$

## Claim: len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{* "}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case: $y=\varepsilon$. For any $x \in \Sigma^{*}, \operatorname{len}(x \bullet \varepsilon)=\operatorname{len}(x)=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{w})$ is true for some arbitrary $w \in \Sigma^{*}$
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$
Let $a \in \Sigma$. Let $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a)$ by defn of $\bullet$

$$
\begin{aligned}
& =\operatorname{len}(x \bullet w)+1 \text { by defn of len } \\
& =\operatorname{len}(x)+\operatorname{len}(w)+1 \text { by I.H. } \\
& =\operatorname{len}(x)+\operatorname{len}(w a) \text { by defn of len }
\end{aligned}
$$

Therefore len $(x \cdot w a)=$ len $(x)+\operatorname{len}(w a)$ for all $x \in \Sigma^{*}$, so $P(w a)$ is true.
So, by induction len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

## Rooted Binary Trees

- Basis:
- is a rooted binary tree
- Recursive step:



## Defining Functions on Rooted Binary Trees

- $\operatorname{size}(\bullet)=1$

- height( $\cdot$ ) = 0


Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(\mathbf{T})+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.

Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathbf{T}) \leq 2^{\text {height }(\mathbf{T})+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$ and $2^{0+1}-1=2^{1}-1=2-1=1$ so $P(\cdot)$ is true

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$ and $1=2^{1}-1=2^{0+1}-1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some
4. Inductive Step: rooted binary trees $T_{1}$ and $T_{2}$. Goal: Prove $\mathrm{P}(\widehat{A})$.

Claim: For every rooted binary tree $\mathbf{T}$, size $(\mathbf{T}) \leq 2^{\text {height }(T)+1}-1$

1. Let $P(T)$ be " $\operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: size $(\cdot)=1$, height $(\cdot)=0$ and $1=2^{1}-1=2^{0+1}-1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some
4. Inductive Step: By defn, $\operatorname{size}(\widehat{4})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

$$
\leq 1+2^{\text {height }\left(T_{1}\right)+1}-1+2^{\text {height }\left(T_{\mathbf{2}}\right)+1}-1
$$

$$
\text { by IH for } \mathrm{T}_{1} \text { and } \mathrm{T}_{2}
$$

$$
=2^{\text {height }\left(\mathbf{T}_{1}\right)+1}+2^{\text {height }\left(T_{2}\right)+1}-1
$$

$$
\left.\leq 2\left(2^{\max (h e i g h t}\left(\mathrm{T}_{1}\right) \text {,height }\left(\mathrm{T}_{2}\right)\right)+1\right)-1
$$

$$
\left.=2\left(2^{\text {height }(~} \widehat{A}\right)\right)-1=2^{\text {height }(太 A)+1}-1
$$

which is what we wanted to show.
5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.

## Languages: Sets of Strings

- Sets of strings that satisfy special properties are called languages. Examples:
- English sentences
- Syntactically correct Java/C/C++ programs
$-\Sigma^{*}=$ All strings over alphabet $\Sigma$
- Palindromes over $\Sigma$
- Binary strings that don't have a 0 after a 1
- Legal variable names. keywords in Java/C/C++
- Binary strings with an equal \# of 0's and 1's


## Regular Expressions

## Regular expressions over $\Sigma$

- Basis:
$\varepsilon$ is a regular expression
(could also include $\varnothing$ )
$a$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If $A$ and $B$ are regular expressions then so are:
$A \cup B$
AB
A*


## Each Regular Expression is a "pattern"

$\varepsilon$ matches the empty string
a matches the one character string $a$
$A \cup B$ matches all strings that either $\mathbf{A}$ matches or B matches (or both)
$A B$ matches all strings that have a first part that $A$ matches followed by a second part that $B$ matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another

## Examples

## 001*

0*1*

## Examples

## 001*

$\{00,001,0011,00111, \ldots\}$

## 0*1*

Any number of 0's followed by any number of 1's

## Examples

## $(0 \cup 1) 0(0 \cup 1) 0$

(0*1*)*

## Examples

$(0 \cup 1) 0(0 \cup 1) 0$
$\{0000,0010,1000,1010\}$
(0*1*)*

All binary strings

## Examples

## $(0 \cup 1)$ * $0110(0 \cup 1)$ *

$(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *$

## Examples

## $(0 \cup 1) * 0110(0 \cup 1)$ *

Binary strings that contain "0110"
$(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *$
Binary strings that begin with pairs of characters followed by "01010" or "10001"

## Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!


## Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();
[01] a 0 or a 1 ^ start of string \$ end of string
[0-9] any single digit \. period <br>, comma \-minus
. any single character
ab a followed by b
(AB)
(a|b) a orb
$(A \cup B)$
$a$ ? zero or one of a
$(A \cup \varepsilon)$
a* zero or more of a A*
a+ one or more of a AA*
- e.g. ^[\-+]?[0-9]*(\. $\backslash,) ?[0-9]+\$$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

