
CSE 311: Foundations of Computing

Lecture 18:  Structural Induction, Regular expressions



Last time: Recursive Definitions of Sets

Recursive definition
– Basis step: Some specific elements are in S
– Recursive step: Given some existing named 

elements in S	some new objects constructed 
from these named elements are also in S.

– Exclusion rule:  Every element in S	follows from 
the basis step and a finite number of recursive 
steps



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Last time: Strings

• An alphabet S is any finite set of characters

• Set S* of strings over the alphabet S is defined by

– Basis: ε	Î	S∗ (ε is the empty string w/ no chars)

– Recursive: if 𝑤 Î S∗, 𝑎 Î S, then 𝑤𝑎 Î S∗



Functions on Recursively Defined Sets (on S*)
Length:

len(ε)	=	0
len(wa)	=	1	+	len(w)	for	w	∈	S*,	a ∈	S

Reversal:
εR =	ε
(wa)R =	a •	wR for	w ∈	S*,	a ∈	S

Concatenation:
x	•	ε =	x	for	x ∈ S*

x	•	wa	=	(x	•	w)a	for	x ∈	S*,	a ∈	S

Number of c’s in a string:
#c(ε)	=	0
#c(wc)	=	#c(w)	+	1	for	w	∈	S*

#c(wa)	=	#c(w)	for	w	∈	S*,	a	∈	S,	a	≠	c



Claim: len(x•y)	=	len(x)	+	len(y) for all x,y∈ S*

Let P(y) be “len(x•y)	=	len(x)	+	len(y)	for	all	x	∈	S* ”.          
We prove P(y)	for all y	∈	S* by structural induction.



Let P(y)	be “len(x•y)	=	len(x)	+	len(y)	for	all	x	∈	S* ” .			
We prove P(y)	for all y ∈	S* by structural induction.

Base Case: y= ε.	For any x ∈	S*,		len(x	• ε)	=	len(x)	=	len(x)	+	len(ε)					
since len(ε)=0.			Therefore P(ε)	is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*

Inductive Step: Goal:	Show	that	P(wa)	is	true	for	every	a ∈	S
Let a ∈	S. Let x ∈	S*.	 Then len(x•wa)	=	len((x•w)a)	by defn of •

=		len(x•w)+1	by defn of len
=	len(x)+len(w)+1		by I.H.
=	len(x)+len(wa)	by defn of len

Therefore len(x•wa)= len(x)+len(wa)	for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y)	=	len(x)	+	len(y)	for all x,y∈ S*

Claim: len(x•y)	=	len(x)	+	len(y) for all x,y∈S*



Let P(y)	be “len(x•y)	=	len(x)	+	len(y)	for	all	x	∈	S* ” .			
We prove P(y)	for all y ∈	S* by structural induction.

Base Case: y= ε.	For any x ∈	S*,		len(x	• ε)	=	len(x)	=	len(x)	+	len(ε)					
since len(ε)=0.			Therefore P(ε)	is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S. Let x ∈	S*.	 Then len(x•wa)	=	len((x•w)a)	by defn of •

=		len(x•w)+1	by defn of len
=	len(x)+len(w)+1		by I.H.
=	len(x)+len(wa)	by defn of len

Therefore len(x•wa)= len(x)+len(wa)	for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y)	=	len(x)	+	len(y)	for all x,y∈ S*

Claim: len(x•y)	=	len(x)	+	len(y) for all x,y∈S*



Let P(y)	be “len(x•y)	=	len(x)	+	len(y)	for	all	x	∈	S* ” .			
We prove P(y)	for all y ∈	S* by structural induction.

Base Case: y= ε.	For any x ∈	S*,		len(x	• ε)	=	len(x)	=	len(x)	+	len(ε)					
since len(ε)=0.			Therefore P(ε)	is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S. Let x ∈	S*.	 Then len(x•wa)	=	len((x•w)a)	by defn of •

=		len(x•w)+1	by defn of len
=	len(x)+len(w)+1		by I.H.
=	len(x)+len(wa)	by defn of len

Therefore len(x•wa)= len(x)+len(wa)	for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y)	=	len(x)	+	len(y)	for all x,y∈ S*

Claim: len(x•y)	=	len(x)	+	len(y) for all x,y∈S*



Rooted Binary Trees

• Basis:  •    is a rooted binary tree
• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T1 T2

T1 T2



Defining Functions on Rooted Binary Trees

• size(•) =	1

• size	( ) =	1	+	size(T1)	+	size(T2)

• height(•) =	0

• height	( )=1	+	max{height(T1),	height(T2)}

T1 T2

T1 T2



Claim: For every rooted binary tree T, size(T)	≤	2height(T)	+	1 - 1

1. Let P(T) be “size(T)	≤	2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T	by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(													)	=1+size(T1)+size(T2)
≤	1+2height(T1)+1–1+2height(T2)+1-1																				

by	IH	for	T1 and	T2
≤	2height(T1)+1+2height(T2)+1–1
≤	2(2max(height(T1),height(T2))+1)–1
≤	2(2height(						 ))–1	≤	2height(												)+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.



Claim: For every rooted binary tree T, size(T)	≤	2height(T)	+	1 - 1

1. Let P(T) be “size(T)	≤	2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T	by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 20+1 – 1=21 – 1=2-1=1 so P(•) is true

3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
rooted binary trees T1 and T2.

4. Inductive Step:             Goal:  Prove P( ).

By defn, size(													)	=1+size(T1)+size(T2)
≤	1+2height(T1)+1–1+2height(T2)+1-1																				

by	IH	for	T1 and	T2
≤	2height(T1)+1+2height(T2)+1–1
≤	2(2max(height(T1),height(T2))+1)–1
≤	2(2height(						 ))–1	≤	2height(												)+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.



Claim: For every rooted binary tree T, size(T)	≤	2height(T)	+	1 - 1

1. Let P(T) be “size(T)	≤	2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T	by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(													)	=1+size(T1)+size(T2)
≤	1+2height(T1)+1–1+2height(T2)+1-1																				

by	IH	for	T1 and	T2
≤	2height(T1)+1+2height(T2)+1–1
≤	2(2max(height(T1),height(T2))+1)–1
≤	2(2height(						 ))–1	≤	2height(												)+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.



Claim: For every rooted binary tree T, size(T)	≤	2height(T)	+	1 - 1

1. Let P(T) be “size(T)	≤	2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T	by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(													)	=1+size(T1)+size(T2)
≤	1+2height(T1)+1	-1+2height(T2)+1	-1																				

by	IH	for	T1 and	T2
=	2height(T1)+1+2height(T2)+1	-1
≤	2(2max(height(T1),height(T2))+1)	-1
=	2(2height(						 ))	- 1	=	2height(												)+1 -1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.



Languages:  Sets of Strings

• Sets of strings that satisfy special properties 
are called languages.  Examples:
– English sentences
– Syntactically correct Java/C/C++ programs
– S* =	All strings over alphabet  S
– Palindromes over  S
– Binary strings that don’t have a 0 after a 1
– Legal variable names. keywords in Java/C/C++
– Binary strings with an equal # of 0’s and 1’s



Regular Expressions

Regular expressions over S
• Basis:

e is	a	regular	expression	 (could	also	include	Æ)
a is	a	regular	expression	for	any	a Î S

• Recursive step:
– If	A and	B are	regular	expressions	then	so	are:

AÈ B
AB
A*



Each Regular Expression is a “pattern”

e matches	the	empty string
a matches	the	one	character	string	a
A È Bmatches	all	strings	that	either	Amatches	
or	Bmatches	(or	both)

ABmatches	all	strings	that	have	a	first	part	that	A
matches	followed	by	a	second	part	that	B
matches

A*matches	all	strings	that	have	any	number	of	
strings	(even	0)	that	Amatches,	one	after	
another



Examples

001*

0*1*



Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s



Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*



Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings



Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*



Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*

Binary strings that contain “0110”

Binary strings that begin with pairs of characters
followed by “01010” or “10001”



Regular Expressions in Practice

• Used	to	define	the	“tokens”:	e.g.,	legal	variable	names,	
keywords	in	programming	languages	and	compilers

• Used	in	grep, a	program	that	does	pattern	matching	
searches	in	UNIX/LINUX

• Pattern	matching	using	regular	expressions	is	an	essential	
feature	of	PHP

• We	can	use	regular	expressions	in	programs	to	process	
strings!



Regular Expressions in Java

• Pattern	p	=	Pattern.compile("a*b");	
• Matcher	m	=	p.matcher("aaaaab");	
• boolean b	=	m.matches();

[01] a	0	or	a	1					^ start	of	string					$ end	of	string
[0-9] any	single	digit							\. period				\, comma		\-minus
. any	single	character
ab									a	followed	by	b												 (AB)
(a|b) a	or	b	 (AÈ B)
a? zero	or	one	of	a												 (AÈ e)
a* zero	or	more	of	a										 A*
a+ one	or	more	of	a									 AA*	

• e.g.			^[\-+]?[0-9]*(\.|\,)?[0-9]+$
General	form	of	decimal	number		e.g.		9.12		or	-9,8	(Europe)


