CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

OH NO! THE KILLER || BUT TD FIND THEM WED HAVE T0 SEARCH
WHENEVER T LEARN A | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL T ConcoCT | |HER ON VACATION ! sa'mw,&s FORMATTED LIKE AN ADDRESS!

ELABORATE FANTASY |
SCENARI0S WHERE (T _ ~— [T5 HOPELESS)
LETS ME. SVE THE DAY. %

(EVERVBIDY STND / T KNOW REGUAR
= EXPRESSIONS .

N (/)
5 R 5

Last time: Recursive Definitions of Sets

Recursive definition

— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed
from these named elements are also in S.

— Exclusion rule: Every element in S follows from

the basis step and a finite number of recursive
steps

Last time: Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Last time: Strings

* An alphabet X is any finite set of characters

« Set X" of strings over the alphabet X is defined by
—Basis:c € X (¢ is the empty string w/ no chars)

— Recursive: if w Z*, a € 2, then wa e ¥

Functions on Recursively Defined Sets (on X%)

Length:
len(e) =0
len(wa)=1+len(w)forw eX* aeX

Reversal:
eR=¢
(Wa)R=aewRforweX* aeX

Concatenation:
xec=xforxe X"
xewa=(xew)laforxeX* aeX

Number of c¢’s in a string:
#(g)=0
(wc)=#(w)+1forweX”
(wa)=#.(w)forweX*,aeX azc

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z*".
We prove P(y) for all y € X* by structural induction.

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X* " .
We prove P(y) for all y € X* by structural induction.

Base Case: y=c. For any x € %, len(x * €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(g) is true

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X* " .
We prove P(y) for all y € X* by structural induction.

Base Case: y=c. For any x € %, len(x ¢ €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
wE X"

Inductive Step: |Goal: Show that P(wa) is true for everya € X

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X* " .
We prove P(y) for all y € X* by structural induction.

Base Case: y=c. For any x € %, len(x ¢ €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
wE X"

Inductive Step: |Goal: Show that P(wa) is true for everya € X

Leta € X. Letx € X*. Then len(xewa) = len((x®w)a) by defn of e
= len(xew)+1 by defn of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by defn of len

Therefore len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X*

Rooted Binary Trees

* Basis: .
* Recursive step:

is a rooted binary tree

Defining Functions on Rooted Binary Trees

A,‘
L X 3

.
L 2 N Ly
: ¢‘ . T .
.
. 1% & "2°

L L LN |G- 3

=1 + size(T,) + size(T,)

)=1 + max{height(T,), height(T,)}

Claim: For every rooted binary tree T, size(T) < 2height(M+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.

Claim: For every rooted binary tree T, size(T) < 2height(M+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0 and 2°+1 — 1=21 - 1=2-1=1 so P(e) is true

Claim: For every rooted binary tree T, size(T) < 2height(T) +

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0 and 1=21-1=20*1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(£)_‘

Claim: For every rooted binary tree T, size(T) < 2height(M+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1”"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0 and 1=21-1=20*1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(/\)._‘

................

................

by IH for T, and T,
— 2height(T1)+1_|_2height(T2)+1 -1

<2 (2max(height(Tl),height(Tz))+1) -1

= 2(2heigntl £ 2,)) - 1 = 2height(4 })+1

..............

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

e Sets of strings that satisfy special properties
are called languages. Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— >" = All strings over alphabet >
— Palindromes over X
— Binary strings that don’t have a O aftera 1
— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of O's and 1's

Regular Expressions

Regular expressions over 2

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € X

* Recursive step:
— |If A and B are regular expressions then so are:
AUB
AB
A*

Each Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Examples

001*

O*1*

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

Oouwuilomo0oulo

(O*1*)*

Examples

Oouwuilomo0oulo

{0000, 0010, 1000, 1010}

(O*1*)*

All binary strings

Examples

Ou1)*0110 (0L 1)*

(00U 11)* (01010 U 10001) (O U 1)*

Examples

(Ou 1)*0110 (0w 1)*

Binary strings that contain “0110”

(OO0 11)* (01010 U 10001) (O U 1)*

Binary strings that begin with pairs of characters
followed by “01010” or “10001”

Regular Expressions in Practice

* Used to define the “tokens’: e.g., legal variable names,
keywords in programming languages and compilers

* Usedin grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
 Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral ~startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|b) aorb (A LU B)
a? zero or one of a (A U Eg)
ax zero or more of a A*

a+ one or more of a AA*

* eg A[\-+]1?[0-9]1*(\.I\,)?[0-9]1+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)

