CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

Recursive definition

- **Basis step**: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- *Exclusion rule*: Every element in S follows from the basis step and a finite number of recursive steps

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

- An alphabet Σ is any finite set of characters
- Set Σ* of strings over the alphabet Σ is defined by

 Basis: ε ∈ Σ* (ε is the empty string w/ no chars)
 Recursive: if w ∈ Σ*, a ∈ Σ, then wa ∈ Σ*

Functions on Recursively Defined Sets (on Σ^*)

Length: len(ε) = 0 len(wa) = 1 + len(w) for w $\in \Sigma^*$, a $\in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$

(wa)^R = a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

x • wa = (x • w)a for x $\in \Sigma^*$, a $\in \Sigma$

Number of c's in a string:

$$\begin{aligned} \#_{c}(\varepsilon) &= 0 \\ \#_{c}(wc) &= \#_{c}(w) + 1 \text{ for } w \in \Sigma^{*} \\ \#_{c}(wa) &= \#_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c \end{aligned}$$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 **by I.H.**

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

- Basis:
 is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ &$$

• height(•) = 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

1. Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and $2^{0+1} 1 = 2^1 1 = 2 1 = 1$ so P(•) is true

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and 1=2¹-1=2⁰⁺¹-1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step:

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and 1=2¹-1=2⁰⁺¹-1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: By defn, size($(\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{2})$) =1+size(\mathbf{T}_{1})+size(\mathbf{T}_{2}) $\leq 1+2^{\text{height}(\mathbf{T}_{1})+1}-1+2^{\text{height}(\mathbf{T}_{2})+1}-1$ by IH for \mathbf{T}_{1} and \mathbf{T}_{2} $= 2^{\text{height}(\mathbf{T}_{1})+1}+2^{\text{height}(\mathbf{T}_{2})+1}-1$ $\leq 2(2^{\max(\text{height}(\mathbf{T}_{1}),\text{height}(\mathbf{T}_{2}))+1})-1$ $= 2(2^{\text{height}(\mathbf{T}_{2})})-1=2^{\text{height}(\mathbf{T}_{2})+1}-1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

- Sets of strings that satisfy special properties are called *languages*. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - $-\Sigma^* =$ All strings over alphabet Σ
 - Palindromes over $\ \Sigma$
 - Binary strings that don't have a 0 after a $\boldsymbol{1}$
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of 0's and 1's

Regular expressions over $\boldsymbol{\Sigma}$

• Basis:

ε is a regular expression (could also include ∅) α is a regular expression for any α ∈ Σ

• Recursive step:

A*

– If A and B are regular expressions then so are: $A \cup B$ AB

- ε matches the empty string
- *a* matches the one character string *a*
- A ∪ B matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

Examples

001*

001*

```
\{00, 001, 0011, 00111, ...\}
```

0*1*

Any number of 0's followed by any number of 1's

Examples

 $(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$

Examples

 $(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$

 $\{0000, 0010, 1000, 1010\}$

(0*1*)*

All binary strings

 $(0 \cup 1)$ * 0110 $(0 \cup 1)$ *

$(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$

 $(0 \cup 1)$ * 0110 $(0 \cup 1)$ *

Binary strings that contain "0110"

$(00 \cup 11)$ * (01010 \cup 10001) (0 \cup 1)*

Binary strings that begin with pairs of characters followed by "01010" or "10001"

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();
 - [01] a 0 or a 1 ^ start of string \$ end of string
 - [0-9] any single digit $\$. period $\$, comma $\$ minus any single character
 - ab a followed by b (AB)
 - (a|b) a or b $(A \cup B)$ a?zero or one of a $(A \cup \varepsilon)$
 - a* zero or more of a **A***
 - a+ one or more of a **AA***
- e.g. **^[\-+]?[0-9]*(\.|\,)?[0-9]+\$**

General form of decimal number e.g. 9.12 or -9,8 (Europe)